mathlib documentation

ring_theory.​subsemiring

ring_theory.​subsemiring

Bundled subsemirings

We define bundled subsemirings and some standard constructions: complete_lattice structure, subtype and inclusion ring homomorphisms, subsemiring map, comap and range (srange) of a ring_hom etc.

def subsemiring.​to_submonoid {R : Type u} [semiring R] :

Reinterpret a subsemiring as a submonoid.

structure subsemiring (R : Type u) [semiring R] :
Type u

A subsemiring of a semiring R is a subset s that is both a multiplicative and an additive submonoid.

@[instance]
def subsemiring.​has_coe {R : Type u} [semiring R] :

Equations
@[instance]

Equations
@[instance]
def subsemiring.​has_mem {R : Type u} [semiring R] :

Equations
def subsemiring.​mk' {R : Type u} [semiring R] (s : set R) (sm : submonoid R) (hm : sm = s) (sa : add_submonoid R) :
sa = ssubsemiring R

Construct a subsemiring R from a set s, a submonoid sm, and an additive submonoid sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

Equations
@[simp]
theorem subsemiring.​coe_mk' {R : Type u} [semiring R] {s : set R} {sm : submonoid R} (hm : sm = s) {sa : add_submonoid R} (ha : sa = s) :
(subsemiring.mk' s sm hm sa ha) = s

@[simp]
theorem subsemiring.​mem_mk' {R : Type u} [semiring R] {s : set R} {sm : submonoid R} (hm : sm = s) {sa : add_submonoid R} (ha : sa = s) {x : R} :
x subsemiring.mk' s sm hm sa ha x s

@[simp]
theorem subsemiring.​mk'_to_submonoid {R : Type u} [semiring R] {s : set R} {sm : submonoid R} (hm : sm = s) {sa : add_submonoid R} (ha : sa = s) :
(subsemiring.mk' s sm hm sa ha).to_submonoid = sm

@[simp]
theorem subsemiring.​mk'_to_add_submonoid {R : Type u} [semiring R] {s : set R} {sm : submonoid R} (hm : sm = s) {sa : add_submonoid R} (ha : sa = s) :

theorem subsemiring.​exists {R : Type u} [semiring R] {s : subsemiring R} {p : s → Prop} :
(∃ (x : s), p x) ∃ (x : R) (H : x s), p x, H⟩

theorem subsemiring.​forall {R : Type u} [semiring R] {s : subsemiring R} {p : s → Prop} :
(∀ (x : s), p x) ∀ (x : R) (H : x s), p x, H⟩

theorem subsemiring.​ext' {R : Type u} [semiring R] ⦃s t : subsemiring R⦄ :
s = ts = t

Two subsemirings are equal if the underlying subsets are equal.

theorem subsemiring.​ext'_iff {R : Type u} [semiring R] {s t : subsemiring R} :
s = t s = t

Two subsemirings are equal if and only if the underlying subsets are equal.

@[ext]
theorem subsemiring.​ext {R : Type u} [semiring R] {S T : subsemiring R} :
(∀ (x : R), x S x T)S = T

Two subsemirings are equal if they have the same elements.

theorem subsemiring.​one_mem {R : Type u} [semiring R] (s : subsemiring R) :
1 s

A subsemiring contains the semiring's 1.

theorem subsemiring.​zero_mem {R : Type u} [semiring R] (s : subsemiring R) :
0 s

A subsemiring contains the semiring's 0.

theorem subsemiring.​mul_mem {R : Type u} [semiring R] (s : subsemiring R) {x y : R} :
x sy sx * y s

A subsemiring is closed under multiplication.

theorem subsemiring.​add_mem {R : Type u} [semiring R] (s : subsemiring R) {x y : R} :
x sy sx + y s

A subsemiring is closed under addition.

theorem subsemiring.​list_prod_mem {R : Type u} [semiring R] (s : subsemiring R) {l : list R} :
(∀ (x : R), x lx s)l.prod s

Product of a list of elements in a subsemiring is in the subsemiring.

theorem subsemiring.​list_sum_mem {R : Type u} [semiring R] (s : subsemiring R) {l : list R} :
(∀ (x : R), x lx s)l.sum s

Sum of a list of elements in a subsemiring is in the subsemiring.

theorem subsemiring.​multiset_prod_mem {R : Type u_1} [comm_semiring R] (s : subsemiring R) (m : multiset R) :
(∀ (a : R), a ma s)m.prod s

Product of a multiset of elements in a subsemiring of a comm_semiring is in the subsemiring.

theorem subsemiring.​multiset_sum_mem {R : Type u_1} [semiring R] (s : subsemiring R) (m : multiset R) :
(∀ (a : R), a ma s)m.sum s

Sum of a multiset of elements in a subsemiring of a semiring is in the add_subsemiring.

theorem subsemiring.​prod_mem {R : Type u_1} [comm_semiring R] (s : subsemiring R) {ι : Type u_2} {t : finset ι} {f : ι → R} :
(∀ (c : ι), c tf c s)t.prod (λ (i : ι), f i) s

Product of elements of a subsemiring of a comm_semiring indexed by a finset is in the subsemiring.

theorem subsemiring.​sum_mem {R : Type u_1} [semiring R] (s : subsemiring R) {ι : Type u_2} {t : finset ι} {f : ι → R} :
(∀ (c : ι), c tf c s)t.sum (λ (i : ι), f i) s

Sum of elements in an subsemiring of an semiring indexed by a finset is in the add_subsemiring.

theorem subsemiring.​pow_mem {R : Type u} [semiring R] (s : subsemiring R) {x : R} (hx : x s) (n : ) :
x ^ n s

theorem subsemiring.​nsmul_mem {R : Type u} [semiring R] (s : subsemiring R) {x : R} (hx : x s) (n : ) :
n •ℕ x s

theorem subsemiring.​coe_nat_mem {R : Type u} [semiring R] (s : subsemiring R) (n : ) :
n s

@[instance]
def subsemiring.​to_semiring {R : Type u} [semiring R] (s : subsemiring R) :

A subsemiring of a semiring inherits a semiring structure

Equations
@[instance]

Equations
  • _ = _
@[simp]
theorem subsemiring.​coe_mul {R : Type u} [semiring R] (s : subsemiring R) (x y : s) :
(x * y) = x * y

@[simp]
theorem subsemiring.​coe_one {R : Type u} [semiring R] (s : subsemiring R) :
1 = 1

def subsemiring.​subtype {R : Type u} [semiring R] (s : subsemiring R) :

The natural ring hom from a subsemiring of semiring R to R.

Equations
@[simp]
theorem subsemiring.​coe_subtype {R : Type u} [semiring R] (s : subsemiring R) :

@[instance]

Equations
theorem subsemiring.​le_def {R : Type u} [semiring R] {s t : subsemiring R} :
s t ∀ ⦃x : R⦄, x sx t

@[simp]
theorem subsemiring.​coe_subset_coe {R : Type u} [semiring R] {s t : subsemiring R} :
s t s t

@[simp]
theorem subsemiring.​coe_ssubset_coe {R : Type u} [semiring R] {s t : subsemiring R} :
s t s < t

@[simp]
theorem subsemiring.​mem_coe {R : Type u} [semiring R] {S : subsemiring R} {m : R} :
m S m S

@[simp]
theorem subsemiring.​coe_coe {R : Type u} [semiring R] (s : subsemiring R) :

@[simp]
theorem subsemiring.​mem_to_submonoid {R : Type u} [semiring R] {s : subsemiring R} {x : R} :

@[simp]
theorem subsemiring.​coe_to_submonoid {R : Type u} [semiring R] (s : subsemiring R) :

@[simp]
theorem subsemiring.​mem_to_add_submonoid {R : Type u} [semiring R] {s : subsemiring R} {x : R} :

@[simp]

@[instance]
def subsemiring.​has_top {R : Type u} [semiring R] :

The subsemiring R of the semiring R.

Equations
@[simp]
theorem subsemiring.​mem_top {R : Type u} [semiring R] (x : R) :

@[simp]
theorem subsemiring.​coe_top {R : Type u} [semiring R] :

def subsemiring.​comap {R : Type u} {S : Type v} [semiring R] [semiring S] :
(R →+* S)subsemiring Ssubsemiring R

The preimage of a subsemiring along a ring homomorphism is a subsemiring.

Equations
@[simp]
theorem subsemiring.​coe_comap {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring S) (f : R →+* S) :

@[simp]
theorem subsemiring.​mem_comap {R : Type u} {S : Type v} [semiring R] [semiring S] {s : subsemiring S} {f : R →+* S} {x : R} :

theorem subsemiring.​comap_comap {R : Type u} {S : Type v} {T : Type w} [semiring R] [semiring S] [semiring T] (s : subsemiring T) (g : S →+* T) (f : R →+* S) :

def subsemiring.​map {R : Type u} {S : Type v} [semiring R] [semiring S] :
(R →+* S)subsemiring Rsubsemiring S

The image of a subsemiring along a ring homomorphism is a subsemiring.

Equations
@[simp]
theorem subsemiring.​coe_map {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (s : subsemiring R) :

@[simp]
theorem subsemiring.​mem_map {R : Type u} {S : Type v} [semiring R] [semiring S] {f : R →+* S} {s : subsemiring R} {y : S} :
y subsemiring.map f s ∃ (x : R) (H : x s), f x = y

theorem subsemiring.​map_map {R : Type u} {S : Type v} {T : Type w} [semiring R] [semiring S] [semiring T] (s : subsemiring R) (g : S →+* T) (f : R →+* S) :

theorem subsemiring.​map_le_iff_le_comap {R : Type u} {S : Type v} [semiring R] [semiring S] {f : R →+* S} {s : subsemiring R} {t : subsemiring S} :

theorem subsemiring.​gc_map_comap {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

def ring_hom.​srange {R : Type u} {S : Type v} [semiring R] [semiring S] :
(R →+* S)subsemiring S

The range of a ring homomorphism is a subsemiring.

Equations
@[simp]
theorem ring_hom.​coe_srange {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

@[simp]
theorem ring_hom.​mem_srange {R : Type u} {S : Type v} [semiring R] [semiring S] {f : R →+* S} {y : S} :
y f.srange ∃ (x : R), f x = y

theorem ring_hom.​map_srange {R : Type u} {S : Type v} {T : Type w} [semiring R] [semiring S] [semiring T] (g : S →+* T) (f : R →+* S) :

@[instance]
def subsemiring.​has_bot {R : Type u} [semiring R] :

Equations
@[instance]

Equations
theorem subsemiring.​mem_bot {R : Type u} [semiring R] {x : R} :
x ∃ (n : ), n = x

@[instance]
def subsemiring.​has_inf {R : Type u} [semiring R] :

The inf of two subsemirings is their intersection.

Equations
@[simp]
theorem subsemiring.​coe_inf {R : Type u} [semiring R] (p p' : subsemiring R) :
(p p') = p p'

@[simp]
theorem subsemiring.​mem_inf {R : Type u} [semiring R] {p p' : subsemiring R} {x : R} :
x p p' x p x p'

@[instance]
def subsemiring.​has_Inf {R : Type u} [semiring R] :

Equations
@[simp]
theorem subsemiring.​coe_Inf {R : Type u} [semiring R] (S : set (subsemiring R)) :
(has_Inf.Inf S) = ⋂ (s : subsemiring R) (H : s S), s

theorem subsemiring.​mem_Inf {R : Type u} [semiring R] {S : set (subsemiring R)} {x : R} :
x has_Inf.Inf S ∀ (p : subsemiring R), p Sx p

@[simp]
theorem subsemiring.​Inf_to_submonoid {R : Type u} [semiring R] (s : set (subsemiring R)) :
(has_Inf.Inf s).to_submonoid = ⨅ (t : subsemiring R) (H : t s), t.to_submonoid

@[simp]
theorem subsemiring.​Inf_to_add_submonoid {R : Type u} [semiring R] (s : set (subsemiring R)) :

@[instance]

Subsemirings of a semiring form a complete lattice.

Equations
def subsemiring.​closure {R : Type u} [semiring R] :

The subsemiring generated by a set.

Equations
theorem subsemiring.​mem_closure {R : Type u} [semiring R] {x : R} {s : set R} :
x subsemiring.closure s ∀ (S : subsemiring R), s Sx S

@[simp]
theorem subsemiring.​subset_closure {R : Type u} [semiring R] {s : set R} :

The subsemiring generated by a set includes the set.

@[simp]
theorem subsemiring.​closure_le {R : Type u} [semiring R] {s : set R} {t : subsemiring R} :

A subsemiring S includes closure s if and only if it includes s.

theorem subsemiring.​closure_mono {R : Type u} [semiring R] ⦃s t : set R⦄ :

Subsemiring closure of a set is monotone in its argument: if s ⊆ t, then closure s ≤ closure t.

theorem subsemiring.​closure_eq_of_le {R : Type u} [semiring R] {s : set R} {t : subsemiring R} :

theorem subsemiring.​closure_induction {R : Type u} [semiring R] {s : set R} {p : R → Prop} {x : R} :
x subsemiring.closure s(∀ (x : R), x sp x)p 0p 1(∀ (x y : R), p xp yp (x + y))(∀ (x y : R), p xp yp (x * y))p x

An induction principle for closure membership. If p holds for 0, 1, and all elements of s, and is preserved under addition and multiplication, then p holds for all elements of the closure of s.

theorem subsemiring.​mem_closure_iff_exists_list {R : Type u} [semiring R] {s : set R} {x : R} :
x subsemiring.closure s ∃ (L : list (list R)), (∀ (t : list R), t L∀ (y : R), y ty s) (list.map list.prod L).sum = x

closure forms a Galois insertion with the coercion to set.

Equations
theorem subsemiring.​closure_eq {R : Type u} [semiring R] (s : subsemiring R) :

Closure of a subsemiring S equals S.

theorem subsemiring.​closure_Union {R : Type u} [semiring R] {ι : Sort u_1} (s : ι → set R) :
subsemiring.closure (⋃ (i : ι), s i) = ⨆ (i : ι), subsemiring.closure (s i)

theorem subsemiring.​closure_sUnion {R : Type u} [semiring R] (s : set (set R)) :

theorem subsemiring.​map_sup {R : Type u} {S : Type v} [semiring R] [semiring S] (s t : subsemiring R) (f : R →+* S) :

theorem subsemiring.​map_supr {R : Type u} {S : Type v} [semiring R] [semiring S] {ι : Sort u_1} (f : R →+* S) (s : ι → subsemiring R) :
subsemiring.map f (supr s) = ⨆ (i : ι), subsemiring.map f (s i)

theorem subsemiring.​comap_inf {R : Type u} {S : Type v} [semiring R] [semiring S] (s t : subsemiring S) (f : R →+* S) :

theorem subsemiring.​comap_infi {R : Type u} {S : Type v} [semiring R] [semiring S] {ι : Sort u_1} (f : R →+* S) (s : ι → subsemiring S) :
subsemiring.comap f (infi s) = ⨅ (i : ι), subsemiring.comap f (s i)

@[simp]
theorem subsemiring.​map_bot {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

@[simp]
theorem subsemiring.​comap_top {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

def subsemiring.​prod {R : Type u} {S : Type v} [semiring R] [semiring S] :

Given subsemirings s, t of semirings R, S respectively, s.prod t is s × t as a subsemiring of R × S.

Equations
theorem subsemiring.​coe_prod {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring R) (t : subsemiring S) :
(s.prod t) = s.prod t

theorem subsemiring.​mem_prod {R : Type u} {S : Type v} [semiring R] [semiring S] {s : subsemiring R} {t : subsemiring S} {p : R × S} :
p s.prod t p.fst s p.snd t

theorem subsemiring.​prod_mono {R : Type u} {S : Type v} [semiring R] [semiring S] ⦃s₁ s₂ : subsemiring R⦄ (hs : s₁ s₂) ⦃t₁ t₂ : subsemiring S⦄ :
t₁ t₂s₁.prod t₁ s₂.prod t₂

theorem subsemiring.​prod_mono_right {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring R) :
monotone (λ (t : subsemiring S), s.prod t)

theorem subsemiring.​prod_mono_left {R : Type u} {S : Type v} [semiring R] [semiring S] (t : subsemiring S) :
monotone (λ (s : subsemiring R), s.prod t)

theorem subsemiring.​prod_top {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring R) :

theorem subsemiring.​top_prod {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring S) :

@[simp]
theorem subsemiring.​top_prod_top {R : Type u} {S : Type v} [semiring R] [semiring S] :

def subsemiring.​prod_equiv {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring R) (t : subsemiring S) :

Product of subsemirings is isomorphic to their product as monoids.

Equations
theorem subsemiring.​mem_supr_of_directed {R : Type u} [semiring R] {ι : Sort u_1} [hι : nonempty ι] {S : ι → subsemiring R} (hS : directed has_le.le S) {x : R} :
(x ⨆ (i : ι), S i) ∃ (i : ι), x S i

theorem subsemiring.​coe_supr_of_directed {R : Type u} [semiring R] {ι : Sort u_1} [hι : nonempty ι] {S : ι → subsemiring R} :
directed has_le.le S((⨆ (i : ι), S i) = ⋃ (i : ι), (S i))

theorem subsemiring.​mem_Sup_of_directed_on {R : Type u} [semiring R] {S : set (subsemiring R)} (Sne : S.nonempty) (hS : directed_on has_le.le S) {x : R} :
x has_Sup.Sup S ∃ (s : subsemiring R) (H : s S), x s

theorem subsemiring.​coe_Sup_of_directed_on {R : Type u} [semiring R] {S : set (subsemiring R)} :
S.nonemptydirected_on has_le.le S((has_Sup.Sup S) = ⋃ (s : subsemiring R) (H : s S), s)

def ring_hom.​srestrict {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (s : subsemiring R) :

Restriction of a ring homomorphism to a subsemiring of the domain.

Equations
@[simp]
theorem ring_hom.​srestrict_apply {R : Type u} {S : Type v} [semiring R] [semiring S] {s : subsemiring R} (f : R →+* S) (x : s) :
(f.srestrict s) x = f x

def ring_hom.​cod_srestrict {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (s : subsemiring S) :
(∀ (x : R), f x s)R →+* s

Restriction of a ring homomorphism to a subsemiring of the codomain.

Equations
def ring_hom.​srange_restrict {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

Restriction of a ring homomorphism to its range iterpreted as a subsemiring.

Equations
@[simp]
theorem ring_hom.​coe_srange_restrict {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (x : R) :

theorem ring_hom.​srange_top_iff_surjective {R : Type u} {S : Type v} [semiring R] [semiring S] {f : R →+* S} :

theorem ring_hom.​srange_top_of_surjective {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) :

The range of a surjective ring homomorphism is the whole of the codomain.

def ring_hom.​eq_slocus {R : Type u} {S : Type v} [semiring R] [semiring S] :
(R →+* S)(R →+* S)subsemiring R

The subsemiring of elements x : R such that f x = g x

Equations
theorem ring_hom.​eq_on_sclosure {R : Type u} {S : Type v} [semiring R] [semiring S] {f g : R →+* S} {s : set R} :

If two ring homomorphisms are equal on a set, then they are equal on its subsemiring closure.

theorem ring_hom.​eq_of_eq_on_stop {R : Type u} {S : Type v} [semiring R] [semiring S] {f g : R →+* S} :

theorem ring_hom.​eq_of_eq_on_sdense {R : Type u} {S : Type v} [semiring R] [semiring S] {s : set R} (hs : subsemiring.closure s = ) {f g : R →+* S} :
set.eq_on f g sf = g

theorem ring_hom.​sclosure_preimage_le {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (s : set S) :

theorem ring_hom.​map_sclosure {R : Type u} {S : Type v} [semiring R] [semiring S] (f : R →+* S) (s : set R) :

The image under a ring homomorphism of the subsemiring generated by a set equals the subsemiring generated by the image of the set.

def subsemiring.​inclusion {R : Type u} [semiring R] {S T : subsemiring R} :
S TS →* T

The ring homomorphism associated to an inclusion of subsemirings.

Equations
@[simp]
theorem subsemiring.​srange_subtype {R : Type u} [semiring R] (s : subsemiring R) :

@[simp]
theorem subsemiring.​range_fst {R : Type u} {S : Type v} [semiring R] [semiring S] :

@[simp]
theorem subsemiring.​range_snd {R : Type u} {S : Type v} [semiring R] [semiring S] :

@[simp]
theorem subsemiring.​prod_bot_sup_bot_prod {R : Type u} {S : Type v} [semiring R] [semiring S] (s : subsemiring R) (t : subsemiring S) :

def ring_equiv.​subsemiring_congr {R : Type u} [semiring R] {s t : subsemiring R} :
s = ts ≃+* t

Makes the identity isomorphism from a proof two subsemirings of a multiplicative monoid are equal.

Equations