- to_is_add_submonoid : is_add_submonoid s
- neg_mem : ∀ {a : A}, a ∈ s → -a ∈ s
s
is an additive subgroup: a set containing 0 and closed under addition and negation.
Instances
- normal_add_subgroup.to_is_add_subgroup
- is_subring.to_is_add_subgroup
- is_add_subgroup.inter
- is_add_subgroup.Inter
- gmultiples.is_add_subgroup
- is_add_subgroup.normalizer_is_add_subgroup
- is_add_group_hom.image_add_subgroup
- is_add_group_hom.range_add_subgroup
- is_add_group_hom.preimage
- add_group.closure.is_add_subgroup
- add_subgroup.is_add_subgroup
- Ring.sections_add_subgroup'
- continuous_add_subgroup
- to_is_submonoid : is_submonoid s
- inv_mem : ∀ {a : G}, a ∈ s → a⁻¹ ∈ s
s
is a subgroup: a set containing 1 and closed under multiplication and inverse.
Instances
Equations
- subtype.group = {mul := monoid.mul subtype.monoid, mul_assoc := _, one := monoid.one subtype.monoid, one_mul := _, mul_one := _, inv := λ (x : ↥s), ⟨(↑x)⁻¹, _⟩, mul_left_inv := _}
Equations
- subtype.comm_group = {mul := group.mul subtype.group, mul_assoc := _, one := group.one subtype.group, one_mul := _, mul_one := _, inv := group.inv subtype.group, mul_left_inv := _, mul_comm := _}
Equations
- _ = _
Equations
- _ = _
Equations
- gmultiples x = set.range (λ (i : ℤ), i •ℤ x)
- to_is_add_subgroup : is_add_subgroup s
- normal : ∀ (n : A), n ∈ s → ∀ (g : A), g + n - g ∈ s
The trivial subgroup
Equations
- is_subgroup.trivial G = {1}
Equations
Equations
Equations
- is_subgroup.center G = {z : G | ∀ (g : G), g * z = z * g}
Equations
Equations
- _ = _
Every subgroup is a normal subgroup of its normalizer
Equations
Equations
- _ = _
Equations
- _ = _
Equations
- _ = _
Equations
- _ = _
Equations
Equations
Equations
Equations
- _ = _
subtype.val : set.range f → H
as a monoid homomorphism, when f
is a monoid homomorphism.
Equations
subtype.val : set.range f → H
as an additive monoid homomorphism, when f
is
an additive monoid homomorphism.
set.range_factorization f : G → set.range f
as a monoid homomorphism, when f
is a monoid
homomorphism.
Equations
- f.range_factorization = {to_fun := set.range_factorization ⇑f, map_one' := _, map_mul' := _}
set.range_factorization f : G → set.range f
as an additive monoid homomorphism,
when f
is an additive monoid homomorphism.
- basic : ∀ {A : Type u_3} [_inst_1 : add_group A] (s : set A) {a : A}, a ∈ s → add_group.in_closure s a
- zero : ∀ {A : Type u_3} [_inst_1 : add_group A] (s : set A), add_group.in_closure s 0
- neg : ∀ {A : Type u_3} [_inst_1 : add_group A] (s : set A) {a : A}, add_group.in_closure s a → add_group.in_closure s (-a)
- add : ∀ {A : Type u_3} [_inst_1 : add_group A] (s : set A) {a b : A}, add_group.in_closure s a → add_group.in_closure s b → add_group.in_closure s (a + b)
- basic : ∀ {G : Type u_1} [_inst_1 : group G] (s : set G) {a : G}, a ∈ s → group.in_closure s a
- one : ∀ {G : Type u_1} [_inst_1 : group G] (s : set G), group.in_closure s 1
- inv : ∀ {G : Type u_1} [_inst_1 : group G] (s : set G) {a : G}, group.in_closure s a → group.in_closure s a⁻¹
- mul : ∀ {G : Type u_1} [_inst_1 : group G] (s : set G) {a b : G}, group.in_closure s a → group.in_closure s b → group.in_closure s (a * b)
group.closure s
is the subgroup closed over s
, i.e. the smallest subgroup containg s.
Equations
- group.closure s = {a : G | group.in_closure s a}
The normal closure of a set s is the subgroup closure of all the conjugates of elements of s. It is the smallest normal subgroup containing s.
Equations
The normal closure of a set is a subgroup.
Equations
- _ = _
The normal closure of s is a normal subgroup.
Equations
The normal closure of s is the smallest normal subgroup containing s.
- simple : ∀ (N : set G) [_inst_1_1 : normal_subgroup N], N = is_subgroup.trivial G ∨ N = set.univ
Instances
- simple : ∀ (N : set A) [_inst_1_1 : normal_add_subgroup N], N = is_add_subgroup.trivial A ∨ N = set.univ
Instances
Equations
Create a bundled additive subgroup from a set s
and [is_add_subgroup s]
.
Create a bundled subgroup from a set s
and [is_subroup s]
.
Equations
- _ = _
Equations
- _ = _