A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well).
theorem
topological_space.is_topological_basis_of_subbasis
{α : Type u}
[t : topological_space α]
{s : set (set α)} :
theorem
topological_space.mem_nhds_of_is_topological_basis
{α : Type u}
[t : topological_space α]
{a : α}
{s : set α}
{b : set (set α)} :
theorem
topological_space.is_open_of_is_topological_basis
{α : Type u}
[t : topological_space α]
{s : set α}
{b : set (set α)} :
topological_space.is_topological_basis b → s ∈ b → is_open s
theorem
topological_space.mem_basis_subset_of_mem_open
{α : Type u}
[t : topological_space α]
{b : set (set α)}
(hb : topological_space.is_topological_basis b)
{a : α}
{u : set α} :
theorem
topological_space.sUnion_basis_of_is_open
{α : Type u}
[t : topological_space α]
{B : set (set α)}
(hB : topological_space.is_topological_basis B)
{u : set α} :
theorem
topological_space.Union_basis_of_is_open
{α : Type u}
[t : topological_space α]
{B : set (set α)}
(hB : topological_space.is_topological_basis B)
{u : set α} :
@[class]
A separable space is one with a countable dense subset.
@[class]
- nhds_generated_countable : ∀ (a : α), (nhds a).is_countably_generated
A first-countable space is one in which every point has a countable neighborhood basis.
theorem
topological_space.first_countable_topology.tendsto_subseq
{α : Type u}
[t : topological_space α]
[topological_space.first_countable_topology α]
{u : ℕ → α}
{x : α} :
map_cluster_pt x filter.at_top u → (∃ (ψ : ℕ → ℕ), strict_mono ψ ∧ filter.tendsto (u ∘ ψ) filter.at_top (nhds x))
@[class]
structure
topological_space.second_countable_topology
(α : Type u)
[t : topological_space α] :
Prop
- is_open_generated_countable : ∃ (b : set (set α)), b.countable ∧ t = topological_space.generate_from b
A second-countable space is one with a countable basis.
Instances
- second_countable_of_proper
- topological_space.subtype.second_countable_topology
- topological_space.topological_space.second_countable_topology
- topological_space.second_countable_topology_fintype
- real.topological_space.second_countable_topology
- nnreal.topological_space.second_countable_topology
- ennreal.topological_space.second_countable_topology
- emetric.nonempty_compacts.second_countable_topology
- Gromov_Hausdorff.second_countable
@[instance]
theorem
topological_space.second_countable_topology_induced
(α : Type u)
(β : Type u_1)
[t : topological_space β]
[topological_space.second_countable_topology β]
(f : α → β) :
@[instance]
def
topological_space.subtype.second_countable_topology
(α : Type u)
[t : topological_space α]
(s : set α)
[topological_space.second_countable_topology α] :
Equations
- _ = _
theorem
topological_space.is_open_generated_countable_inter
(α : Type u)
[t : topological_space α]
[topological_space.second_countable_topology α] :
@[instance]
def
topological_space.topological_space.second_countable_topology
(α : Type u)
[t : topological_space α]
{β : Type u_1}
[topological_space β]
[topological_space.second_countable_topology α]
[topological_space.second_countable_topology β] :
@[instance]
def
topological_space.second_countable_topology_fintype
{ι : Type u_1}
{π : ι → Type u_2}
[fintype ι]
[t : Π (a : ι), topological_space (π a)]
[sc : ∀ (a : ι), topological_space.second_countable_topology (π a)] :
topological_space.second_countable_topology (Π (a : ι), π a)
Equations
@[instance]
def
topological_space.second_countable_topology.to_separable_space
(α : Type u)
[t : topological_space α]
[topological_space.second_countable_topology α] :
Equations
- _ = _
theorem
topological_space.is_open_Union_countable
{α : Type u}
[t : topological_space α]
[topological_space.second_countable_topology α]
{ι : Type u_1}
(s : ι → set α) :