mathlib documentation

category_theory.​limits.​preserves.​shapes

category_theory.​limits.​preserves.​shapes

def preserves_products_iso {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (G : C D) [category_theory.limits.preserves_limits G] {J : Type v} (f : J → C) [category_theory.limits.has_limits C] [category_theory.limits.has_limits D] :
G.obj ( f) λ (j : J), G.obj (f j)

If G preserves limits, we have an isomorphism from the image of a product to the product of the images.

Equations
@[simp]
theorem preserves_products_iso_hom_π_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (G : C D) [category_theory.limits.preserves_limits G] {J : Type v} (f : J → C) [category_theory.limits.has_limits C] [category_theory.limits.has_limits D] (j : J) {X' : D} (f' : G.obj (f j) X') :

@[simp]
theorem map_lift_comp_preserves_products_iso_hom_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (G : C D) [category_theory.limits.preserves_limits G] {J : Type v} (f : J → C) [category_theory.limits.has_limits C] [category_theory.limits.has_limits D] (P : C) (g : Π (j : J), P f j) {X' : D} (f' : ( λ (j : J), G.obj (f j)) X') :