mathlib documentation

data.​zsqrtd.​gaussian_int

data.​zsqrtd.​gaussian_int

Gaussian integers

The Gaussian integers are complex integer, complex numbers whose real and imaginary parts are both integers.

Main definitions

The Euclidean domain structure on ℤ[i] is defined in this file.

The homomorphism to_complex into the complex numbers is also defined in this file.

Main statements

prime_iff_mod_four_eq_three_of_nat_prime A prime natural number is prime in ℤ[i] if and only if it is 3 mod 4

Notations

This file uses the local notation ℤ[i] for gaussian_int

Implementation notes

Gaussian integers are implemented using the more general definition zsqrtd, the type of integers adjoined a square root of d, in this case -1. The definition is reducible, so that properties and definitions about zsqrtd can easily be used.

def gaussian_int  :
Type

Equations
@[instance]

Equations

The embedding of the Gaussian integers into the complex numbers, as a ring homomorphism.

Equations
theorem gaussian_int.​to_complex_def' (x y : ) :
{re := x, im := y} = x + y * complex.I

@[simp]

@[simp]

@[simp]
theorem gaussian_int.​to_complex_re (x y : ) :
{re := x, im := y}.re = x

@[simp]
theorem gaussian_int.​to_complex_im (x y : ) :
{re := x, im := y}.im = y

@[simp]

@[simp]

@[simp]

@[simp]

@[simp]

@[simp]

@[simp]

@[simp]

Equations

Equations
theorem gaussian_int.​mod_def (x y : gaussian_int) :
x % y = x - y * (x / y)

A prime natural number is prime in ℤ[i] if and only if it is 3 mod 4