Presheafed spaces
Introduces the category of topological spaces equipped with a presheaf (taking values in an
arbitrary target category C
.)
We further describe how to apply functors and natural transformations to the values of the presheaves.
- to_Top : Top
- 𝒪 : Top.presheaf C c.to_Top
A PresheafedSpace C
is a topological space equipped with a presheaf of C
s.
Equations
Equations
- X.topological_space = X.to_Top.str
A morphism between presheafed spaces X
and Y
consists of a continuous map
f
between the underlying topological spaces, and a (notice contravariant!) map
from the presheaf on Y
to the pushforward of the presheaf on X
via f
.
Equations
- X.id = {base := 𝟙 ↑X, c := (category_theory.functor.left_unitor X.𝒪).inv ≫ category_theory.whisker_right (category_theory.nat_trans.op (topological_space.opens.map_id X.to_Top).hom) X.𝒪}
The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.
Equations
The forgetful functor from PresheafedSpace
to Top
.
Equations
- algebraic_geometry.PresheafedSpace.forget = {obj := λ (X : algebraic_geometry.PresheafedSpace C), ↑X, map := λ (X Y : algebraic_geometry.PresheafedSpace C) (f : X ⟶ Y), f.base, map_id' := _, map_comp' := _}
We can apply a functor F : C ⥤ D
to the values of the presheaf in any PresheafedSpace C
,
giving a functor PresheafedSpace C ⥤ PresheafedSpace D
Equations
- category_theory.nat_trans.on_presheaf α = {app := λ (X : algebraic_geometry.PresheafedSpace C), {base := 𝟙 ↑(G.map_presheaf.obj X), c := category_theory.whisker_left X.𝒪 α ≫ (X.𝒪 ⋙ G).left_unitor.inv ≫ category_theory.whisker_right (category_theory.nat_trans.op (topological_space.opens.map_id X.to_Top).hom) (X.𝒪 ⋙ G)}, naturality' := _}