mathlib documentation

algebraic_geometry.​presheafed_space

algebraic_geometry.​presheafed_space

Presheafed spaces

Introduces the category of topological spaces equipped with a presheaf (taking values in an arbitrary target category C.)

We further describe how to apply functors and natural transformations to the values of the presheaves.

structure algebraic_geometry.​PresheafedSpace (C : Type u) [๐’ž : category_theory.category C] :
Type (max u (v+1))

A PresheafedSpace C is a topological space equipped with a presheaf of Cs.

@[simp]
theorem algebraic_geometry.​PresheafedSpace.​mk_coe {C : Type u} [๐’ž : category_theory.category C] (to_Top : Top) (๐’ช : Top.presheaf C to_Top) :
โ†‘{to_Top := to_Top, ๐’ช := ๐’ช} = to_Top

A morphism between presheafed spaces X and Y consists of a continuous map f between the underlying topological spaces, and a (notice contravariant!) map from the presheaf on Y to the pushforward of the presheaf on X via f.

@[ext]
theorem algebraic_geometry.​PresheafedSpace.​ext {C : Type u} [๐’ž : category_theory.category C] {X Y : algebraic_geometry.PresheafedSpace C} (ฮฑ ฮฒ : X.hom Y) (w : ฮฑ.base = ฮฒ.base) :

def algebraic_geometry.​PresheafedSpace.​comp {C : Type u} [๐’ž : category_theory.category C] (X Y Z : algebraic_geometry.PresheafedSpace C) :
X.hom Y โ†’ Y.hom Z โ†’ X.hom Z

Equations
@[instance]

The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.

Equations

We can apply a functor F : C โฅค D to the values of the presheaf in any PresheafedSpace C, giving a functor PresheafedSpace C โฅค PresheafedSpace D

Equations