Presheafed spaces
Introduces the category of topological spaces equipped with a presheaf (taking values in an
arbitrary target category C
.)
We further describe how to apply functors and natural transformations to the values of the presheaves.
- to_Top : Top
- ๐ช : Top.presheaf C c.to_Top
A PresheafedSpace C
is a topological space equipped with a presheaf of C
s.
Equations
Equations
- X.topological_space = X.to_Top.str
A morphism between presheafed spaces X
and Y
consists of a continuous map
f
between the underlying topological spaces, and a (notice contravariant!) map
from the presheaf on Y
to the pushforward of the presheaf on X
via f
.
Equations
The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.
Equations
- algebraic_geometry.PresheafedSpace.category_of_PresheafedSpaces C = {to_category_struct := {to_has_hom := {hom := algebraic_geometry.PresheafedSpace.hom ๐}, id := algebraic_geometry.PresheafedSpace.id ๐, comp := algebraic_geometry.PresheafedSpace.comp ๐}, id_comp' := _, comp_id' := _, assoc' := _}
The forgetful functor from PresheafedSpace
to Top
.
Equations
- algebraic_geometry.PresheafedSpace.forget = {obj := ฮป (X : algebraic_geometry.PresheafedSpace C), โX, map := ฮป (X Y : algebraic_geometry.PresheafedSpace C) (f : X โถ Y), f.base, map_id' := _, map_comp' := _}
We can apply a functor F : C โฅค D
to the values of the presheaf in any PresheafedSpace C
,
giving a functor PresheafedSpace C โฅค PresheafedSpace D
Equations
- category_theory.nat_trans.on_presheaf ฮฑ = {app := ฮป (X : algebraic_geometry.PresheafedSpace C), {base := ๐ โ(G.map_presheaf.obj X), c := category_theory.whisker_left X.๐ช ฮฑ โซ (X.๐ช โ G).left_unitor.inv โซ category_theory.whisker_right (category_theory.nat_trans.op (topological_space.opens.map_id X.to_Top).hom) (X.๐ช โ G)}, naturality' := _}