mathlib documentation

algebraic_geometry.​presheafed_space

algebraic_geometry.​presheafed_space

Presheafed spaces

Introduces the category of topological spaces equipped with a presheaf (taking values in an arbitrary target category C.)

We further describe how to apply functors and natural transformations to the values of the presheaves.

structure algebraic_geometry.​PresheafedSpace (C : Type u) [𝒞 : category_theory.category C] :
Type (max u (v+1))

A PresheafedSpace C is a topological space equipped with a presheaf of Cs.

@[simp]
theorem algebraic_geometry.​PresheafedSpace.​mk_coe {C : Type u} [𝒞 : category_theory.category C] (to_Top : Top) (𝒪 : Top.presheaf C to_Top) :
{to_Top := to_Top, 𝒪 := 𝒪} = to_Top

A morphism between presheafed spaces X and Y consists of a continuous map f between the underlying topological spaces, and a (notice contravariant!) map from the presheaf on Y to the pushforward of the presheaf on X via f.

@[instance]

The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.

Equations
@[simp]
theorem algebraic_geometry.​PresheafedSpace.​comp_base {C : Type u} [𝒞 : category_theory.category C] {X Y Z : algebraic_geometry.PresheafedSpace C} (f : X Y) (g : Y Z) :
(f g).base = f.base g.base

We can apply a functor F : C ⥤ D to the values of the presheaf in any PresheafedSpace C, giving a functor PresheafedSpace C ⥤ PresheafedSpace D

Equations
@[simp]