Reinterpret an open_add_subgroup
as an add_subgroup
.
def
open_subgroup.to_subgroup
{G : Type u_1}
[group G]
[topological_space G] :
open_subgroup G → subgroup G
Reinterpret an open_subgroup
as a subgroup
.
@[instance]
def
open_subgroup.has_coe_set
{G : Type u_1}
[group G]
[topological_space G] :
has_coe_t (open_subgroup G) (set G)
Equations
- open_subgroup.has_coe_set = {coe := λ (U : open_subgroup G), U.carrier}
@[instance]
def
open_add_subgroup.has_coe_set
{G : Type u_1}
[add_group G]
[topological_space G] :
has_coe_t (open_add_subgroup G) (set G)
@[instance]
def
open_subgroup.has_mem
{G : Type u_1}
[group G]
[topological_space G] :
has_mem G (open_subgroup G)
Equations
- open_subgroup.has_mem = {mem := λ (g : G) (U : open_subgroup G), g ∈ ↑U}
@[instance]
def
open_add_subgroup.has_mem
{G : Type u_1}
[add_group G]
[topological_space G] :
has_mem G (open_add_subgroup G)
@[instance]
def
open_add_subgroup.has_coe_add_subgroup
{G : Type u_1}
[add_group G]
[topological_space G] :
has_coe_t (open_add_subgroup G) (add_subgroup G)
@[instance]
def
open_subgroup.has_coe_subgroup
{G : Type u_1}
[group G]
[topological_space G] :
has_coe_t (open_subgroup G) (subgroup G)
Equations
- open_subgroup.has_coe_subgroup = {coe := open_subgroup.to_subgroup _inst_2}
@[instance]
Equations
- open_subgroup.has_coe_opens = {coe := λ (U : open_subgroup G), ⟨↑U, _⟩}
@[instance]
@[simp]
theorem
open_add_subgroup.mem_coe
{G : Type u_1}
[add_group G]
[topological_space G]
{U : open_add_subgroup G}
{g : G} :
@[simp]
theorem
open_subgroup.mem_coe
{G : Type u_1}
[group G]
[topological_space G]
{U : open_subgroup G}
{g : G} :
@[simp]
theorem
open_add_subgroup.mem_coe_opens
{G : Type u_1}
[add_group G]
[topological_space G]
{U : open_add_subgroup G}
{g : G} :
@[simp]
theorem
open_subgroup.mem_coe_opens
{G : Type u_1}
[group G]
[topological_space G]
{U : open_subgroup G}
{g : G} :
@[simp]
theorem
open_add_subgroup.mem_coe_add_subgroup
{G : Type u_1}
[add_group G]
[topological_space G]
{U : open_add_subgroup G}
{g : G} :
@[simp]
theorem
open_subgroup.mem_coe_subgroup
{G : Type u_1}
[group G]
[topological_space G]
{U : open_subgroup G}
{g : G} :
@[ext]
theorem
open_add_subgroup.ext
{G : Type u_1}
[add_group G]
[topological_space G]
{U V : open_add_subgroup G} :
theorem
open_subgroup.ext_iff
{G : Type u_1}
[group G]
[topological_space G]
{U V : open_subgroup G} :
theorem
open_add_subgroup.ext_iff
{G : Type u_1}
[add_group G]
[topological_space G]
{U V : open_add_subgroup G} :
theorem
open_add_subgroup.is_open
{G : Type u_1}
[add_group G]
[topological_space G]
(U : open_add_subgroup G) :
theorem
open_subgroup.is_open
{G : Type u_1}
[group G]
[topological_space G]
(U : open_subgroup G) :
theorem
open_subgroup.one_mem
{G : Type u_1}
[group G]
[topological_space G]
(U : open_subgroup G) :
1 ∈ U
theorem
open_add_subgroup.zero_mem
{G : Type u_1}
[add_group G]
[topological_space G]
(U : open_add_subgroup G) :
0 ∈ U
theorem
open_add_subgroup.neg_mem
{G : Type u_1}
[add_group G]
[topological_space G]
(U : open_add_subgroup G)
{g : G} :
theorem
open_subgroup.inv_mem
{G : Type u_1}
[group G]
[topological_space G]
(U : open_subgroup G)
{g : G} :
theorem
open_add_subgroup.add_mem
{G : Type u_1}
[add_group G]
[topological_space G]
(U : open_add_subgroup G)
{g₁ g₂ : G} :
theorem
open_subgroup.mul_mem
{G : Type u_1}
[group G]
[topological_space G]
(U : open_subgroup G)
{g₁ g₂ : G} :
theorem
open_subgroup.mem_nhds_one
{G : Type u_1}
[group G]
[topological_space G]
(U : open_subgroup G) :
theorem
open_add_subgroup.mem_nhds_zero
{G : Type u_1}
[add_group G]
[topological_space G]
(U : open_add_subgroup G) :
@[instance]
def
open_subgroup.has_top
{G : Type u_1}
[group G]
[topological_space G] :
has_top (open_subgroup G)
@[instance]
@[instance]
theorem
open_subgroup.is_closed
{G : Type u_1}
[group G]
[topological_space G]
[has_continuous_mul G]
(U : open_subgroup G) :
theorem
open_add_subgroup.is_closed
{G : Type u_1}
[add_group G]
[topological_space G]
[has_continuous_add G]
(U : open_add_subgroup G) :
def
open_subgroup.prod
{G : Type u_1}
[group G]
[topological_space G]
{H : Type u_2}
[group H]
[topological_space H] :
open_subgroup G → open_subgroup H → open_subgroup (G × H)
def
open_add_subgroup.sum
{G : Type u_1}
[add_group G]
[topological_space G]
{H : Type u_2}
[add_group H]
[topological_space H] :
open_add_subgroup G → open_add_subgroup H → open_add_subgroup (G × H)
@[instance]
@[instance]
Equations
- open_subgroup.partial_order = {le := λ (U V : open_subgroup G), ∀ ⦃x : G⦄, x ∈ U → x ∈ V, lt := partial_order.lt (partial_order.lift coe open_subgroup.coe_injective), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _}
@[instance]
Equations
- open_subgroup.semilattice_inf_top = {top := ⊤, le := partial_order.le open_subgroup.partial_order, lt := partial_order.lt open_subgroup.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_top := _, inf := λ (U V : open_subgroup G), {carrier := (↑U ⊓ ↑V).carrier, one_mem' := _, mul_mem' := _, inv_mem' := _, is_open' := _}, inf_le_left := _, inf_le_right := _, le_inf := _}
@[instance]
@[simp]
theorem
open_add_subgroup.coe_inf
{G : Type u_1}
[add_group G]
[topological_space G]
{U V : open_add_subgroup G} :
@[simp]
theorem
open_subgroup.coe_inf
{G : Type u_1}
[group G]
[topological_space G]
{U V : open_subgroup G} :
@[simp]
theorem
open_subgroup.coe_subset
{G : Type u_1}
[group G]
[topological_space G]
{U V : open_subgroup G} :
@[simp]
theorem
open_add_subgroup.coe_subset
{G : Type u_1}
[add_group G]
[topological_space G]
{U V : open_add_subgroup G} :
@[simp]
theorem
open_add_subgroup.coe_add_subgroup_le
{G : Type u_1}
[add_group G]
[topological_space G]
{U V : open_add_subgroup G} :
@[simp]
theorem
open_subgroup.coe_subgroup_le
{G : Type u_1}
[group G]
[topological_space G]
{U V : open_subgroup G} :
theorem
subgroup.is_open_of_mem_nhds
{G : Type u_1}
[group G]
[topological_space G]
[has_continuous_mul G]
(H : subgroup G)
{g : G} :
theorem
add_subgroup.is_open_of_mem_nhds
{G : Type u_1}
[add_group G]
[topological_space G]
[has_continuous_add G]
(H : add_subgroup G)
{g : G} :
theorem
subgroup.is_open_of_open_subgroup
{G : Type u_1}
[group G]
[topological_space G]
[has_continuous_mul G]
(H : subgroup G)
{U : open_subgroup G} :
theorem
add_subgroup.is_open_of_open_add_subgroup
{G : Type u_1}
[add_group G]
[topological_space G]
[has_continuous_add G]
(H : add_subgroup G)
{U : open_add_subgroup G} :
theorem
subgroup.is_open_mono
{G : Type u_1}
[group G]
[topological_space G]
[has_continuous_mul G]
{H₁ H₂ : subgroup G} :
theorem
add_subgroup.is_open_mono
{G : Type u_1}
[add_group G]
[topological_space G]
[has_continuous_add G]
{H₁ H₂ : add_subgroup G} :
@[instance]
def
open_subgroup.semilattice_sup_top
{G : Type u_1}
[group G]
[topological_space G]
[has_continuous_mul G] :
Equations
- open_subgroup.semilattice_sup_top = {top := semilattice_inf_top.top open_subgroup.semilattice_inf_top, le := semilattice_inf_top.le open_subgroup.semilattice_inf_top, lt := semilattice_inf_top.lt open_subgroup.semilattice_inf_top, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_top := _, sup := λ (U V : open_subgroup G), {carrier := (↑U ⊔ ↑V).carrier, one_mem' := _, mul_mem' := _, inv_mem' := _, is_open' := _}, le_sup_left := _, le_sup_right := _, sup_le := _}
@[instance]
def
open_add_subgroup.semilattice_sup_top
{G : Type u_1}
[add_group G]
[topological_space G]
[has_continuous_add G] :
theorem
submodule.is_open_mono
{R : Type u_1}
{M : Type u_2}
[comm_ring R]
[add_comm_group M]
[topological_space M]
[topological_add_group M]
[module R M]
{U P : submodule R M} :
theorem
ideal.is_open_of_open_subideal
{R : Type u_1}
[comm_ring R]
[topological_space R]
[topological_ring R]
{U I : ideal R} :