discrete punit
has limits and colimits
Mostly for the sake of constructing trivial examples,
we show all (co)cones into discrete punit
are (co)limit (co)cones,
and discrete punit
has all (co)limits.
def
category_theory.limits.punit_cone_is_limit
{J : Type v}
[category_theory.small_category J]
{F : J ⥤ category_theory.discrete punit}
{c : category_theory.limits.cone F} :
Any cone over a functor into punit
is a limit cone.
def
category_theory.limits.punit_cocone_is_colimit
{J : Type v}
[category_theory.small_category J]
{F : J ⥤ category_theory.discrete punit}
{c : category_theory.limits.cocone F} :
Any cocone over a functor into punit
is a colimit cocone.
@[instance]
Equations
- category_theory.limits.category_theory.limits.has_limits = {has_limits_of_shape := λ (J : Type u_1) (𝒥 : category_theory.small_category J), {has_limit := λ (F : J ⥤ category_theory.discrete punit), {cone := category_theory.limits.category_theory.limits.has_limits._aux_3 J F, is_limit := {lift := category_theory.limits.category_theory.limits.has_limits._aux_4 J F, fac' := _, uniq' := _}}}}
@[instance]
Equations
- category_theory.limits.category_theory.limits.has_colimits = {has_colimits_of_shape := λ (J : Type u_1) (𝒥 : category_theory.small_category J), {has_colimit := λ (F : J ⥤ category_theory.discrete punit), {cocone := category_theory.limits.category_theory.limits.has_colimits._aux_3 J F, is_colimit := {desc := category_theory.limits.category_theory.limits.has_colimits._aux_4 J F, fac' := _, uniq' := _}}}}