- smul : α → γ → γ
Typeclass for types with a scalar multiplication operation, denoted •
(\bu
)
Instances
- algebra.to_has_scalar
- mul_action.to_has_scalar
- order_dual.has_scalar
- pi.has_scalar
- pi.has_scalar'
- prod.has_scalar
- submodule.has_scalar
- finsupp.has_scalar
- set.has_scalar_set
- set.has_scalar
- linear_map.has_scalar
- submodule.quotient.has_scalar
- matrix.has_scalar
- tensor_product.has_scalar
- linear_map.has_scalar_extend_scalars
- monoid_algebra.has_scalar
- add_monoid_algebra.has_scalar
- polynomial.has_scalar
- mv_polynomial.has_scalar
- submodule.has_scalar'
- ulift.has_scalar
- ulift.has_scalar'
- continuous_linear_map.has_scalar
- bounded_continuous_function.has_scalar
- bounded_continuous_function.has_scalar'
- continuous_linear_map.has_scalar_extend_scalars
- multilinear_map.has_scalar
- continuous_multilinear_map.has_scalar
- coninuous_has_scalar
- continuous_map_has_scalar
- continuous_has_scalar'
- continuous_map_has_scalar'
- holor.has_scalar
- filter.germ.has_scalar
- filter.germ.has_scalar'
- quadratic_form.has_scalar
- tensor_algebra.has_scalar
- measure_theory.outer_measure.has_scalar
- measure_theory.measure.has_scalar
- measure_theory.simple_func.has_scalar
- measure_theory.ae_eq_fun.has_scalar
- measure_theory.l1.has_scalar
Pullback a multiplicative action along an injective map respecting •
.
Equations
- function.injective.mul_action f hf smul = {to_has_scalar := {smul := has_scalar.smul _inst_3}, one_smul := _, mul_smul := _}
Pushforward a multiplicative action along a surjective map respecting •
.
Equations
- function.surjective.mul_action f hf smul = {to_has_scalar := {smul := has_scalar.smul _inst_3}, one_smul := _, mul_smul := _}
An instance of is_scalar_tower R M N
states that the multiplicative
action of R
on N
is determined by the multiplicative actions of R
on M
and M
on N
.
Instances
- mul_action.is_scalar_tower.left
- pi.is_scalar_tower
- pi.is_scalar_tower'
- pi.is_scalar_tower''
- semimodule.restrict_scalars.is_scalar_tower
- ulift.is_scalar_tower
- ulift.is_scalar_tower'
- ulift.is_scalar_tower''
- is_scalar_tower.right
- is_scalar_tower.nat
- is_scalar_tower.comap
- is_scalar_tower.subsemiring
- is_scalar_tower.subring
- is_scalar_tower.of_ring_hom
- is_scalar_tower.subalgebra
- is_scalar_tower.polynomial
- is_scalar_tower.int
- is_scalar_tower.rat
- polynomial.splitting_field_aux.scalar_tower
- polynomial.splitting_field_aux.scalar_tower'
- algebraic_closure.step.scalar_tower
- derivation.is_scalar_tower
The regular action of a monoid on itself by left multiplication.
Equations
- mul_action.regular α = {to_has_scalar := {smul := λ (a₁ a₂ : α), a₁ * a₂}, one_smul := _, mul_smul := _}
Equations
- _ = _
The orbit of an element under an action.
Equations
- mul_action.orbit α b = set.range (λ (x : α), x • b)
The stabilizer of an element under an action, i.e. what sends the element to itself. Note
that this is a set: for the group stabilizer see stabilizer
.
Equations
- mul_action.stabilizer_carrier α b = {x : α | x • b = b}
The set of elements fixed under the whole action.
Equations
- mul_action.fixed_points α β = {b : β | ∀ (x : α), x • b = b}
fixed_by g
is the subfield of elements fixed by g
.
Equations
- mul_action.fixed_by α β g = {x : β | g • x = x}
An action of α
on β
and a monoid homomorphism γ → α
induce an action of γ
on β
.
Equations
- mul_action.comp_hom β g = {to_has_scalar := {smul := λ (x : γ) (b : β), ⇑g x • b}, one_smul := _, mul_smul := _}
The stabilizer of a point b
as a submonoid of α
.
Equations
- mul_action.stabilizer.submonoid α b = {carrier := mul_action.stabilizer_carrier α b, one_mem' := _, mul_mem' := _}
The stabilizer of an element under an action, i.e. what sends the element to itself. A subgroup.
Equations
- mul_action.stabilizer α b = {carrier := (mul_action.stabilizer.submonoid α b).carrier, one_mem' := _, mul_mem' := _, inv_mem' := _}
Given an action of a group α
on a set β
, each g : α
defines a permutation of β
.
Equations
- mul_action.to_perm α β g = {to_fun := has_scalar.smul g, inv_fun := has_scalar.smul g⁻¹, left_inv := _, right_inv := _}
Equations
The stabilizer of a point b
as a subgroup of α
.
Equations
- mul_action.stabilizer.subgroup α b = {carrier := (mul_action.stabilizer.submonoid α b).carrier, one_mem' := _, mul_mem' := _, inv_mem' := _}
The relation "in the same orbit".
Equations
- mul_action.orbit_rel α β = {r := λ (a b : β), a ∈ mul_action.orbit α b, iseqv := _}
Action on left cosets.
Equations
- mul_action.mul_left_cosets H x y = quotient.lift_on' y (λ (y : α), quotient_group.mk (x * y)) _
Equations
- mul_action.mul_action H = {to_has_scalar := {smul := mul_action.mul_left_cosets H}, one_smul := _, mul_smul := _}
Equations
The canonical map from the quotient of the stabilizer to the set.
Equations
- mul_action.of_quotient_stabilizer α x g = quotient.lift_on' g (λ (_x : α), _x • x) _
Orbit-stabilizer theorem.
Equations
- mul_action.orbit_equiv_quotient_stabilizer α b = (equiv.of_bijective (λ (g : quotient_group.quotient (mul_action.stabilizer α b)), ⟨mul_action.of_quotient_stabilizer α b g, _⟩) _).symm
Pullback a distributive multiplicative action along an injective additive monoid homomorphism.
Equations
- function.injective.distrib_mul_action f hf smul = {to_mul_action := {to_has_scalar := {smul := has_scalar.smul _inst_5}, one_smul := _, mul_smul := _}, smul_add := _, smul_zero := _}
Pushforward a distributive multiplicative action along a surjective additive monoid homomorphism.
Equations
- function.surjective.distrib_mul_action f hf smul = {to_mul_action := {to_has_scalar := {smul := has_scalar.smul _inst_5}, one_smul := _, mul_smul := _}, smul_add := _, smul_zero := _}
Scalar multiplication by r
as an add_monoid_hom
.
Equations
- const_smul_hom β r = {to_fun := has_scalar.smul r, map_zero' := _, map_add' := _}