mathlib documentation

topology.​uniform_space.​absolute_value

topology.​uniform_space.​absolute_value

Uniform structure induced by an absolute value

We build a uniform space structure on a commutative ring R equipped with an absolute value into a linear ordered field 𝕜. Of course in the case R is , or and 𝕜 = ℝ, we get the same thing as the metric space construction, and the general construction follows exactly the same path.

Implementation details

Note that we import data.real.cau_seq because this is where absolute values are defined, but the current file does not depend on real numbers. TODO: extract absolute values from that data.real folder.

References

Tags

absolute value, uniform spaces

def is_absolute_value.​uniform_space_core {𝕜 : Type u_1} [discrete_linear_ordered_field 𝕜] {R : Type u_2} [comm_ring R] (abv : R → 𝕜) [is_absolute_value abv] :

The uniformity coming from an absolute value.

Equations
def is_absolute_value.​uniform_space {𝕜 : Type u_1} [discrete_linear_ordered_field 𝕜] {R : Type u_2} [comm_ring R] (abv : R → 𝕜) [is_absolute_value abv] :

The uniform structure coming from an absolute value.

Equations
theorem is_absolute_value.​mem_uniformity {𝕜 : Type u_1} [discrete_linear_ordered_field 𝕜] {R : Type u_2} [comm_ring R] (abv : R → 𝕜) [is_absolute_value abv] {s : set (R × R)} :
s (is_absolute_value.uniform_space_core abv).uniformity ∃ (ε : 𝕜) (H : ε > 0), ∀ {a b : R}, abv (b - a) < ε(a, b) s