mathlib documentation

group_theory.​eckmann_hilton

group_theory.​eckmann_hilton

@[class]
structure eckmann_hilton.​is_unital {X : Type u} :
(X → X → X)X → Prop
  • one_mul : ∀ (x : X), m e x = x
  • mul_one : ∀ (x : X), m x e = x

theorem eckmann_hilton.​one {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} :
eckmann_hilton.is_unital m₁ e₁eckmann_hilton.is_unital m₂ e₂(∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d))e₁ = e₂

theorem eckmann_hilton.​mul {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} :
eckmann_hilton.is_unital m₁ e₁eckmann_hilton.is_unital m₂ e₂(∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d))m₁ = m₂

theorem eckmann_hilton.​mul_comm {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} :
eckmann_hilton.is_unital m₁ e₁eckmann_hilton.is_unital m₂ e₂(∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d))is_commutative X m₂

theorem eckmann_hilton.​mul_assoc {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} :
eckmann_hilton.is_unital m₁ e₁eckmann_hilton.is_unital m₂ e₂(∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d))is_associative X m₂

def eckmann_hilton.​comm_monoid {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} :
eckmann_hilton.is_unital m₁ e₁eckmann_hilton.is_unital m₂ e₂(∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d))comm_monoid X

Equations
def eckmann_hilton.​comm_group {X : Type u} {m₁ m₂ : X → X → X} {e₁ e₂ : X} (h₁ : eckmann_hilton.is_unital m₁ e₁) (h₂ : eckmann_hilton.is_unital m₂ e₂) [G : group X] :
(∀ (a b c d : X), m₁ (a * b) (c * d) = m₁ a c * m₁ b d)comm_group X

Equations