mathlib documentation

category_theory.​epi_mono

category_theory.​epi_mono

theorem category_theory.​left_adjoint_preserves_epi {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : C} {f : X Y} :

theorem category_theory.​right_adjoint_preserves_mono {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : D} {f : X Y} :

@[class]
structure category_theory.​split_mono {C : Type u₁} [category_theory.category C] {X Y : C} :
(X Y)Type v₁

A split monomorphism is a morphism f : X ⟶ Y admitting a retraction retraction f : Y ⟶ X such that f ≫ retraction f = 𝟙 X.

Every split monomorphism is a monomorphism.

Instances
@[class]
structure category_theory.​split_epi {C : Type u₁} [category_theory.category C] {X Y : C} :
(X Y)Type v₁

A split epimorphism is a morphism f : X ⟶ Y admitting a section section_ f : Y ⟶ X such that section_ f ≫ f = 𝟙 Y. (Note that section is a reserved keyword, so we append an underscore.)

Every split epimorphism is an epimorphism.

Instances
def category_theory.​retraction {C : Type u₁} [category_theory.category C] {X Y : C} (f : X Y) [category_theory.split_mono f] :
Y X

The chosen retraction of a split monomorphism.

Equations
@[simp]
theorem category_theory.​split_mono.​id_assoc {C : Type u₁} [category_theory.category C] {X Y : C} (f : X Y) [category_theory.split_mono f] {X' : C} (f' : X X') :

@[instance]

The retraction of a split monomorphism is itself a split epimorphism.

Equations
def category_theory.​section_ {C : Type u₁} [category_theory.category C] {X Y : C} (f : X Y) [category_theory.split_epi f] :
Y X

The chosen section of a split epimorphism. (Note that section is a reserved keyword, so we append an underscore.)

Equations
@[simp]
theorem category_theory.​split_epi.​id_assoc {C : Type u₁} [category_theory.category C] {X Y : C} (f : X Y) [category_theory.split_epi f] {X' : C} (f' : Y X') :

@[instance]

The section of a split epimorphism is itself a split monomorphism.

Equations
@[instance]

Every iso is a split mono.

Equations
@[instance]

Every iso is a split epi.

Equations
@[instance]

Every split mono is a mono.

Equations
  • _ = _
@[instance]

Every split epi is an epi.

Equations
  • _ = _
@[instance]

Equations
  • _ = _
@[instance]

Equations
  • _ = _
@[instance]

Equations
  • _ = _
@[instance]

Equations
  • _ = _
@[instance]

Split monomorphisms are also absolute monomorphisms.

Equations
@[instance]

Split epimorphisms are also absolute epimorphisms.

Equations