A split monomorphism is a morphism f : X ⟶ Y
admitting a retraction retraction f : Y ⟶ X
such that f ≫ retraction f = 𝟙 X
.
Every split monomorphism is a monomorphism.
Instances
- category_theory.split_mono.of_iso
- category_theory.section_split_mono
- category_theory.category_theory.split_mono
- category_theory.limits.split_mono_sigma_ι
- category_theory.limits.split_mono_coprod_inl
- category_theory.limits.split_mono_coprod_inr
- category_theory.limits.biproduct.ι_mono
- category_theory.limits.biprod.inl_mono
- category_theory.limits.biprod.inr_mono
A split epimorphism is a morphism f : X ⟶ Y
admitting a section section_ f : Y ⟶ X
such that section_ f ≫ f = 𝟙 Y
.
(Note that section
is a reserved keyword, so we append an underscore.)
Every split epimorphism is an epimorphism.
Instances
- category_theory.split_epi.of_iso
- category_theory.retraction_split_epi
- category_theory.category_theory.split_epi
- category_theory.limits.split_epi_pi_π
- category_theory.limits.split_epi_prod_fst
- category_theory.limits.split_epi_prod_snd
- category_theory.limits.biproduct.π_epi
- category_theory.limits.biprod.fst_epi
- category_theory.limits.biprod.snd_epi
The chosen retraction of a split monomorphism.
Equations
The retraction of a split monomorphism is itself a split epimorphism.
Equations
- category_theory.retraction_split_epi f = {section_ := f, id' := _}
A split mono which is epi is an iso.
Equations
- category_theory.is_iso_of_epi_of_split_mono f = {inv := category_theory.retraction f _inst_2, hom_inv_id' := _, inv_hom_id' := _}
The chosen section of a split epimorphism.
(Note that section
is a reserved keyword, so we append an underscore.)
Equations
The section of a split epimorphism is itself a split monomorphism.
Equations
- category_theory.section_split_mono f = {retraction := f, id' := _}
A split epi which is mono is an iso.
Equations
- category_theory.is_iso_of_mono_of_split_epi f = {inv := category_theory.section_ f _inst_3, hom_inv_id' := _, inv_hom_id' := _}
Every iso is a split mono.
Equations
- category_theory.split_mono.of_iso f = {retraction := category_theory.is_iso.inv f _inst_2, id' := _}
Every iso is a split epi.
Equations
- category_theory.split_epi.of_iso f = {section_ := category_theory.is_iso.inv f _inst_2, id' := _}
Every split mono is a mono.
Equations
- _ = _
Every split epi is an epi.
Equations
- _ = _
Every split mono whose retraction is mono is an iso.
Equations
- category_theory.is_iso.of_mono_retraction = {inv := category_theory.retraction f _inst_2, hom_inv_id' := _, inv_hom_id' := _}
Every split epi whose section is epi is an iso.
Equations
- category_theory.is_iso.of_epi_section = {inv := category_theory.section_ f _inst_2, hom_inv_id' := _, inv_hom_id' := _}
Equations
- _ = _
Equations
- _ = _
Equations
- _ = _
Equations
- _ = _
Split monomorphisms are also absolute monomorphisms.
Equations
- category_theory.category_theory.split_mono f F = {retraction := F.map (category_theory.retraction f), id' := _}
Split epimorphisms are also absolute epimorphisms.
Equations
- category_theory.category_theory.split_epi f F = {section_ := F.map (category_theory.section_ f), id' := _}