mathlib documentation

category_theory.​adjunction.​basic

category_theory.​adjunction.​basic

structure category_theory.​adjunction {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
C DD CType (max u₁ u₂ v₁ v₂)

F ⊣ G represents the data of an adjunction between two functors F : C ⥤ D and G : D ⥤ C. F is the left adjoint and G is the right adjoint.

To construct an adjunction between two functors, it's often easier to instead use the constructors mk_of_hom_equiv or mk_of_unit_counit. To construct a left adjoint, there are also constructors left_adjoint_of_equiv and adjunction_of_equiv_left (as well as their duals) which can be simpler in practice.

@[class]
structure category_theory.​is_left_adjoint {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
C DType (max u₁ u₂ v₁ v₂)

A class giving a chosen right adjoint to the functor left.

Instances

Extract the left adjoint from the instance giving the chosen adjoint.

Equations

Extract the right adjoint from the instance giving the chosen adjoint.

Equations

The adjunction associated to a functor known to be a left adjoint.

Equations

The adjunction associated to a functor known to be a right adjoint.

Equations
@[simp]
theorem category_theory.​adjunction.​hom_equiv_naturality_left_symm {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X' X : C} {Y : D} (f : X' X) (g : X G.obj Y) :
((adj.hom_equiv X' Y).symm) (f g) = F.map f ((adj.hom_equiv X Y).symm) g

@[simp]
theorem category_theory.​adjunction.​hom_equiv_naturality_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X' X : C} {Y : D} (f : X' X) (g : F.obj X Y) :
(adj.hom_equiv X' Y) (F.map f g) = f (adj.hom_equiv X Y) g

@[simp]
theorem category_theory.​adjunction.​hom_equiv_naturality_right {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X : C} {Y Y' : D} (f : F.obj X Y) (g : Y Y') :
(adj.hom_equiv X Y') (f g) = (adj.hom_equiv X Y) f G.map g

@[simp]
theorem category_theory.​adjunction.​hom_equiv_naturality_right_symm {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X : C} {Y Y' : D} (f : X G.obj Y) (g : Y Y') :
((adj.hom_equiv X Y').symm) (f G.map g) = ((adj.hom_equiv X Y).symm) f g

@[simp]
theorem category_theory.​adjunction.​left_triangle_components {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X : C} :
F.map (adj.unit.app X) adj.counit.app (F.obj X) = 𝟙 (F.obj X)

@[simp]
theorem category_theory.​adjunction.​left_triangle_components_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X : C} {X' : D} (f' : (𝟭 D).obj (F.obj X) X') :
F.map (adj.unit.app X) adj.counit.app (F.obj X) f' = f'

@[simp]
theorem category_theory.​adjunction.​right_triangle_components_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {Y : D} {X' : C} (f' : G.obj ((𝟭 D).obj Y) X') :
adj.unit.app (G.obj Y) G.map (adj.counit.app Y) f' = f'

@[simp]
theorem category_theory.​adjunction.​right_triangle_components {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {Y : D} :
adj.unit.app (G.obj Y) G.map (adj.counit.app Y) = 𝟙 (G.obj Y)

@[simp]
theorem category_theory.​adjunction.​counit_naturality_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : D} (f : X Y) {X' : D} (f' : (𝟭 D).obj Y X') :
F.map (G.map f) adj.counit.app Y f' = adj.counit.app X f f'

@[simp]
theorem category_theory.​adjunction.​counit_naturality {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : D} (f : X Y) :
F.map (G.map f) adj.counit.app Y = adj.counit.app X f

@[simp]
theorem category_theory.​adjunction.​unit_naturality_assoc {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : C} (f : X Y) {X' : C} (f' : G.obj (F.obj Y) X') :
adj.unit.app X G.map (F.map f) f' = f adj.unit.app Y f'

@[simp]
theorem category_theory.​adjunction.​unit_naturality {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {X Y : C} (f : X Y) :
adj.unit.app X G.map (F.map f) = f adj.unit.app Y

theorem category_theory.​adjunction.​hom_equiv_apply_eq {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
(adj.hom_equiv A B) f = g f = ((adj.hom_equiv A B).symm) g

theorem category_theory.​adjunction.​eq_hom_equiv_apply {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
g = (adj.hom_equiv A B) f ((adj.hom_equiv A B).symm) g = f

structure category_theory.​adjunction.​core_hom_equiv {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
C DD CType (max u₁ u₂ v₁ v₂)

@[simp]
theorem category_theory.​adjunction.​core_hom_equiv.​hom_equiv_naturality_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : category_theory.adjunction.core_hom_equiv F G) {X' X : C} {Y : D} (f : X' X) (g : F.obj X Y) :
(adj.hom_equiv X' Y) (F.map f g) = f (adj.hom_equiv X Y) g

@[simp]
theorem category_theory.​adjunction.​core_hom_equiv.​hom_equiv_naturality_right_symm {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} (adj : category_theory.adjunction.core_hom_equiv F G) {X : C} {Y Y' : D} (f : X G.obj Y) (g : Y Y') :
((adj.hom_equiv X Y').symm) (f G.map g) = ((adj.hom_equiv X Y).symm) f g

structure category_theory.​adjunction.​core_unit_counit {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] :
C DD CType (max u₁ u₂ v₁ v₂)

Construct an adjunction between F and G out of a natural bijection between each F.obj X ⟶ Y and X ⟶ G.obj Y.

Equations

Construct an adjunction between functors F and G given a unit and counit for the adjunction satisfying the triangle identities.

Equations

The adjunction between the identity functor on a category and itself.

Equations
def category_theory.​adjunction.​equiv_homset_left_of_nat_iso {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F F' : C D} (iso : F F') {X : C} {Y : D} :
(F.obj X Y) (F'.obj X Y)

If F and G are naturally isomorphic functors, establish an equivalence of hom-sets.

Equations
@[simp]
theorem category_theory.​adjunction.​equiv_homset_left_of_nat_iso_apply {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F F' : C D} (iso : F F') {X : C} {Y : D} (f : F.obj X Y) :

@[simp]
theorem category_theory.​adjunction.​equiv_homset_left_of_nat_iso_symm_apply {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F F' : C D} (iso : F F') {X : C} {Y : D} (g : F'.obj X Y) :

def category_theory.​adjunction.​equiv_homset_right_of_nat_iso {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {G G' : D C} (iso : G G') {X : C} {Y : D} :
(X G.obj Y) (X G'.obj Y)

If G and H are naturally isomorphic functors, establish an equivalence of hom-sets.

Equations
@[simp]
theorem category_theory.​adjunction.​equiv_homset_right_of_nat_iso_apply {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {G G' : D C} (iso : G G') {X : C} {Y : D} (f : X G.obj Y) :

@[simp]
theorem category_theory.​adjunction.​equiv_homset_right_of_nat_iso_symm_apply {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {G G' : D C} (iso : G G') {X : C} {Y : D} (g : X G'.obj Y) :

def category_theory.​adjunction.​of_nat_iso_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C D} {H : D C} :
(F H)(F G)(G H)

Transport an adjunction along an natural isomorphism on the left.

Equations
def category_theory.​adjunction.​of_nat_iso_right {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G H : D C} :
(F G)(G H)(F H)

Transport an adjunction along an natural isomorphism on the right.

Equations
def category_theory.​adjunction.​comp {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G : D C} {E : Type u₃} [ℰ : category_theory.category E] (H : D E) (I : E D) :
(F G)(H I)(F H I G)

Show that adjunctions can be composed.

Equations
def category_theory.​adjunction.​left_adjoint_of_equiv {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {G : D C} {F_obj : C → D} (e : Π (X : C) (Y : D), (F_obj X Y) (X G.obj Y)) :
(∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (h g) = (e X Y) h G.map g)C D

Construct a left adjoint functor to G, given the functor's value on objects F_obj and a bijection e between F_obj X ⟶ Y and X ⟶ G.obj Y satisfying a naturality law he : ∀ X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g. Dual to right_adjoint_of_equiv.

Equations
def category_theory.​adjunction.​adjunction_of_equiv_left {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {G : D C} {F_obj : C → D} (e : Π (X : C) (Y : D), (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (h g) = (e X Y) h G.map g) :

Show that the functor given by left_adjoint_of_equiv is indeed left adjoint to G. Dual to adjunction_of_equiv_right.

Equations
def category_theory.​adjunction.​right_adjoint_of_equiv {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G_obj : D → C} (e : Π (X : C) (Y : D), (F.obj X Y) (X G_obj Y)) :
(∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (F.map f g) = f (e X Y) g)D C

Construct a right adjoint functor to F, given the functor's value on objects G_obj and a bijection e between F.obj X ⟶ Y and X ⟶ G_obj Y satisfying a naturality law he : ∀ X Y Y' g h, e X' Y (F.map f ≫ g) = f ≫ e X Y g. Dual to left_adjoint_of_equiv.

Equations
def category_theory.​adjunction.​adjunction_of_equiv_right {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F : C D} {G_obj : D → C} (e : Π (X : C) (Y : D), (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (F.map f g) = f (e X Y) g) :

Show that the functor given by right_adjoint_of_equiv is indeed right adjoint to F. Dual to adjunction_of_equiv_left.

Equations

The adjunction given by an equivalence of categories. (To obtain the opposite adjunction, simply use e.symm.to_adjunction.

Equations

An equivalence E is left adjoint to its inverse.

Equations
@[instance]

If F is an equivalence, it's a left adjoint.

Equations