mathlib documentation

category_theory.​adjunction.​opposites

category_theory.​adjunction.​opposites

Opposite adjunctions

This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.

Tags

adjunction, opposite

def adjunction.​adjoint_unop_of_adjoint_op {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : C D) (G : Dᵒᵖ Cᵒᵖ) :
(G F.op)(F G.unop)

If G is adjoint to F.op then F is adjoint to G.unop.

Equations
def adjunction.​unop_adjoint_of_op_adjoint {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : Cᵒᵖ Dᵒᵖ) (G : D C) :
(G.op F)(F.unop G)

If G.op is adjoint to F then F.unop is adjoint to G.

Equations
def adjunction.​unop_adjoint_unop_of_adjoint {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : Cᵒᵖ Dᵒᵖ) (G : Dᵒᵖ Cᵒᵖ) :
(G F)(F.unop G.unop)

If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
def adjunction.​adjoint_op_of_adjoint_unop {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : Cᵒᵖ Dᵒᵖ) (G : D C) :
(G F.unop)(F G.op)

If G is adjoint to F.unop then F is adjoint to G.op.

Equations
def adjunction.​op_adjoint_of_unop_adjoint {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : C D) (G : Dᵒᵖ Cᵒᵖ) :
(G.unop F)(F.op G)

If G.unop is adjoint to F then F.op is adjoint to G.

Equations
def adjunction.​adjoint_of_unop_adjoint_unop {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] (F : Cᵒᵖ Dᵒᵖ) (G : Dᵒᵖ Cᵒᵖ) :
(G.unop F.unop)(F G)

If G.unop is adjoint to F.unop then F is adjoint to G.

Equations