Linarith preprocessing
This file contains methods used to preprocess inputs to linarith
.
In particular, linarith
works over comparisons of the form t R 0
, where R ∈ {<,≤,=}
.
It assumes that expressions in t
have integer coefficients and that the type of t
has
well-behaved subtraction.
Implementation details
A global_preprocessor
is a function list expr → tactic(list expr)
. Users can add custom
preprocessing steps by adding them to the linarith_config
object. linarith.default_preprocessors
is the main list, and generally none of these should be skipped unless you know what you're doing.
Preprocessing
rearr_comp e
takes a proof e
of an equality, inequality, or negation thereof,
and turns it into a proof of a comparison _ R 0
, where R ∈ {=, ≤, <}
.
If e
is of the form ((n : ℕ) : ℤ)
, is_nat_int_coe e
returns n : ℕ
.
If e : ℕ
, returns a proof of 0 ≤ (e : ℤ)
.
get_nat_comps e
returns a list of all subexpressions of e
of the form ((t : ℕ) : ℤ)
.
If pf
is a proof of a strict inequality (a : ℤ) < b
,
mk_non_strict_int_pf_of_strict_int_pf pf
returns a proof of a + 1 ≤ b
,
and similarly if pf
proves a negated weak inequality.
is_nat_prop tp
is true iff tp
is an inequality or equality between natural numbers
or the negation thereof.
is_strict_int_prop tp
is true iff tp
is a strict inequality between integers
or the negation of a weak inequality between integers.
Removes any expressions that are not proofs of inequalities, equalities, or negations thereof.
Replaces proofs of negations of comparisons with proofs of the reversed comparisons.
For example, a proof of ¬ a < b
will become a proof of a ≥ b
.
If h
is an equality or inequality between natural numbers,
nat_to_int
lifts this inequality to the integers.
It also adds the facts that the integers involved are nonnegative.
To avoid adding the same nonnegativity facts many times, it is a global preprocessor.
strengthen_strict_int h
turns a proof h
of a strict integer inequality t1 < t2
into a proof of t1 ≤ t2 + 1
.
mk_comp_with_zero h
takes a proof h
of an equality, inequality, or negation thereof,
and turns it into a proof of a comparison _ R 0
, where R ∈ {=, ≤, <}
.
cancel_denoms pf
assumes pf
is a proof of t R 0
. If t
contains the division symbol /
,
it tries to scale t
to cancel out division by numerals.
find_squares m e
collects all terms of the form a ^ 2
and a * a
that appear in e
and adds them to the set m
.
A pair (a, tt)
is added to m
when a^2
appears in e
, and (a, ff)
is added to m
when a*a
appears in e
.
nlinarith_extras
is the preprocessor corresponding to the nlinarith
tactic.
- For every term
t
such thatt^2
ort*t
appears in the input, adds a proof oft^2 ≥ 0
ort*t ≥ 0
. - For every pair of comparisons
t1 R1 0
andt2 R2 0
, adds a proof oft1*t2 R 0
.
This preprocessor is typically run last, after all inputs have been canonized.
remove_ne_aux
case splits on any proof h : a ≠ b
in the input, turning it into a < b ∨ a > b
.
This produces 2^n
branches when there are n
such hypotheses in the input.
remove_ne
case splits on any proof h : a ≠ b
in the input, turning it into a < b ∨ a > b
,
by calling linarith.remove_ne_aux
.
This produces 2^n
branches when there are n
such hypotheses in the input.
The default list of preprocessors, in the order they should typically run.
preprocess pps l
takes a list l
of proofs of propositions.
It maps each preprocessor pp ∈ pps
over this list.
The preprocessors are run sequentially: each recieves the output of the previous one.
Note that a preprocessor may produce multiple or no expressions from each input expression,
so the size of the list may change.