mathlib documentation

topology.​maps

topology.​maps

Specific classes of maps between topological spaces

This file introduces the following properties of a map f : X → Y between topological spaces:

(Open and closed maps need not be continuous.)

References

Tags

open map, closed map, embedding, quotient map, identification map

structure inducing {α : Type u_1} {β : Type u_2} [tα : topological_space α] [tβ : topological_space β] :
(α → β) → Prop

theorem inducing_id {α : Type u_1} [topological_space α] :

theorem inducing.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :
inducing ginducing finducing (g f)

theorem inducing_of_inducing_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :
continuous fcontinuous ginducing (g f)inducing f

theorem inducing_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {s : set α} :
inducing fis_open (set.range f)is_open sis_open (f '' s)

theorem inducing_is_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {s : set α} :
inducing fis_closed (set.range f)is_closed sis_closed (f '' s)

theorem inducing.​nhds_eq_comap {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : inducing f) (a : α) :
nhds a = filter.comap f (nhds (f a))

theorem inducing.​map_nhds_eq {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : inducing f) (a : α) :
set.range f nhds (f a)filter.map f (nhds a) = nhds (f a)

theorem inducing.​tendsto_nhds_iff {β : Type u_2} {γ : Type u_3} [topological_space β] [topological_space γ] {ι : Type u_1} {f : ι → β} {g : β → γ} {a : filter ι} {b : β} :
inducing g(filter.tendsto f a (nhds b) filter.tendsto (g f) a (nhds (g b)))

theorem inducing.​continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :

theorem inducing.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

structure embedding {α : Type u_1} {β : Type u_2} [tα : topological_space α] [tβ : topological_space β] :
(α → β) → Prop

A function between topological spaces is an embedding if it is injective, and for all s : set α, s is open iff it is the preimage of an open set.

theorem embedding.​mk' {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (f : α → β) :
function.injective f(∀ (a : α), filter.comap f (nhds (f a)) = nhds a)embedding f

theorem embedding_id {α : Type u_1} [topological_space α] :

theorem embedding.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :
embedding gembedding fembedding (g f)

theorem embedding_of_embedding_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :
continuous fcontinuous gembedding (g f)embedding f

theorem embedding_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {s : set α} :
embedding fis_open (set.range f)is_open sis_open (f '' s)

theorem embedding_is_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {s : set α} :

theorem embedding.​map_nhds_eq {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : embedding f) (a : α) :
set.range f nhds (f a)filter.map f (nhds a) = nhds (f a)

theorem embedding.​tendsto_nhds_iff {β : Type u_2} {γ : Type u_3} [topological_space β] [topological_space γ] {ι : Type u_1} {f : ι → β} {g : β → γ} {a : filter ι} {b : β} :
embedding g(filter.tendsto f a (nhds b) filter.tendsto (g f) a (nhds (g b)))

theorem embedding.​continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :

theorem embedding.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem embedding.​closure_eq_preimage_closure_image {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {e : α → β} (he : embedding e) (s : set α) :

def quotient_map {α : Type u_1} {β : Type u_2} [tα : topological_space α] [tβ : topological_space β] :
(α → β) → Prop

A function between topological spaces is a quotient map if it is surjective, and for all s : set β, s is open iff its preimage is an open set.

Equations
theorem quotient_map.​id {α : Type u_1} [topological_space α] :

theorem quotient_map.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :

theorem quotient_map.​of_quotient_map_compose {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :

theorem quotient_map.​continuous_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {f : α → β} {g : β → γ} :

theorem quotient_map.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

def is_open_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :
(α → β) → Prop

A map f : α → β is said to be an open map, if the image of any open U : set α is open in β.

Equations
theorem is_open_map.​id {α : Type u_1} [topological_space α] :

theorem is_open_map.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :

theorem is_open_map.​is_open_range {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem is_open_map.​image_mem_nhds {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : is_open_map f) {x : α} {s : set α} :
s nhds xf '' s nhds (f x)

theorem is_open_map.​nhds_le {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : is_open_map f) (a : α) :
nhds (f a) filter.map f (nhds a)

theorem is_open_map.​of_inverse {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {f' : β → α} :

theorem is_open_map.​to_quotient_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem is_open_map_iff_nhds_le {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :
is_open_map f ∀ (a : α), nhds (f a) filter.map f (nhds a)

def is_closed_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :
(α → β) → Prop

Equations
theorem is_closed_map.​id {α : Type u_1} [topological_space α] :

theorem is_closed_map.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :

theorem is_closed_map.​of_inverse {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} {f' : β → α} :

structure open_embedding {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :
(α → β) → Prop

An open embedding is an embedding with open image.

theorem open_embedding.​open_iff_image_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : open_embedding f) {s : set α} :

theorem open_embedding.​is_open_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem open_embedding.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem open_embedding.​open_iff_preimage_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : open_embedding f) {s : set β} :

theorem open_embedding_of_embedding_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem open_embedding_of_continuous_injective_open {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem open_embedding_id {α : Type u_1} [topological_space α] :

theorem open_embedding.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :

structure closed_embedding {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] :
(α → β) → Prop

A closed embedding is an embedding with closed image.

theorem closed_embedding.​continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem closed_embedding.​closed_iff_image_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : closed_embedding f) {s : set α} :

theorem closed_embedding.​is_closed_map {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem closed_embedding.​closed_iff_preimage_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (hf : closed_embedding f) {s : set β} :

theorem closed_embedding_of_embedding_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem closed_embedding_of_continuous_injective_closed {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} :

theorem closed_embedding.​comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [topological_space α] [topological_space β] [topological_space γ] {g : β → γ} {f : α → β} :