mathlib documentation

category_theory.​monoidal.​category

category_theory.​monoidal.​category

@[class]
structure category_theory.​monoidal_category (C : Type u) [š’ž : category_theory.category C] :
Type (max u v)

In a monoidal category, we can take the tensor product of objects, X āŠ— Y and of morphisms f āŠ— g. Tensor product does not need to be strictly associative on objects, but there is a specified associator, Ī±_ X Y Z : (X āŠ— Y) āŠ— Z ā‰… X āŠ— (Y āŠ— Z). There is a tensor unit šŸ™_ C, with specified left and right unitor isomorphisms Ī»_ X : šŸ™_ C āŠ— X ā‰… X and Ļ_ X : X āŠ— šŸ™_ C ā‰… X. These associators and unitors satisfy the pentagon and triangle equations.

Instances
def category_theory.​tensor_iso {C : Type u} {X Y X' Y' : C} [category_theory.category C] [category_theory.monoidal_category C] :
(X ā‰… Y) ā†’ (X' ā‰… Y') ā†’ (X āŠ— X' ā‰… Y āŠ— Y')

The tensor product of two isomorphisms is an isomorphism.

Equations
theorem category_theory.​monoidal_category.​associator_inv_naturality {C : Type u} [category_theory.category C] [category_theory.monoidal_category C] {X Y Z X' Y' Z' : C} (f : X āŸ¶ X') (g : Y āŸ¶ Y') (h : Z āŸ¶ Z') :
(f āŠ— g āŠ— h) ā‰« (Ī±_ X' Y' Z').inv = (Ī±_ X Y Z).inv ā‰« ((f āŠ— g) āŠ— h)

The tensor product expressed as a functor.

Equations

The left-associated triple tensor product as a functor.

Equations

The right-associated triple tensor product as a functor.

Equations

The functor Ī» X, šŸ™_ C āŠ— X.

Equations

The functor Ī» X, X āŠ— šŸ™_ C.

Equations

Tensoring on the left with as fixed object, as a functor.

Equations

Tensoring on the right with as fixed object, as a functor.

Equations

Tensoring on the right, as a functor from C into endofunctors of C.

We later show this is a monoidal functor.

Equations