@[instance]
@[class]
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- neg : α → α
- add_left_neg : ∀ (a : α), -a + a = 0
- add_comm : ∀ (a b : α), a + b = b + a
- mul : α → α → α
- mul_assoc : ∀ (a b c_1 : α), a * b * c_1 = a * (b * c_1)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- left_distrib : ∀ (a b c_1 : α), a * (b + c_1) = a * b + a * c_1
- right_distrib : ∀ (a b c_1 : α), (a + b) * c_1 = a * c_1 + b * c_1
- inv : α → α
- exists_pair_ne : ∃ (x y : α), x ≠ y
- mul_inv_cancel : ∀ {a : α}, a ≠ 0 → a * a⁻¹ = 1
- inv_mul_cancel : ∀ {a : α}, a ≠ 0 → a⁻¹ * a = 1
- inv_zero : 0⁻¹ = 0
A division_ring
is a ring
with multiplicative inverses for nonzero elements
@[instance]
@[instance]
Every division ring is a group_with_zero
.
Equations
- division_ring.to_group_with_zero = {mul := division_ring.mul _inst_1, mul_assoc := _, one := division_ring.one _inst_1, one_mul := _, mul_one := _, zero := division_ring.zero _inst_1, zero_mul := _, mul_zero := _, inv := division_ring.inv _inst_1, exists_pair_ne := _, inv_zero := _, mul_inv_cancel := _}
@[instance]
Equations
- division_ring.to_domain = {add := division_ring.add _inst_1, add_assoc := _, zero := division_ring.zero _inst_1, zero_add := _, add_zero := _, neg := division_ring.neg _inst_1, add_left_neg := _, add_comm := _, mul := division_ring.mul _inst_1, mul_assoc := _, one := division_ring.one _inst_1, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, exists_pair_ne := _, eq_zero_or_eq_zero_of_mul_eq_zero := _}
@[class]
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- neg : α → α
- add_left_neg : ∀ (a : α), -a + a = 0
- add_comm : ∀ (a b : α), a + b = b + a
- mul : α → α → α
- mul_assoc : ∀ (a b c_1 : α), a * b * c_1 = a * (b * c_1)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- left_distrib : ∀ (a b c_1 : α), a * (b + c_1) = a * b + a * c_1
- right_distrib : ∀ (a b c_1 : α), (a + b) * c_1 = a * c_1 + b * c_1
- mul_comm : ∀ (a b : α), a * b = b * a
- inv : α → α
- exists_pair_ne : ∃ (x y : α), x ≠ y
- mul_inv_cancel : ∀ {a : α}, a ≠ 0 → a * a⁻¹ = 1
- inv_zero : 0⁻¹ = 0
A field
is a comm_ring
with multiplicative inverses for nonzero elements
Instances
- linear_ordered_field.to_field
- normed_field.to_field
- opposite.field
- rat.field
- local_ring.residue_field.field
- real.field
- complex.field
- padic.field
- zmod.field
- adjoin_root.field
- polynomial.splitting_field_aux.field
- polynomial.splitting_field.field
- algebraic_closure.adjoin_monic.field
- algebraic_closure.step.field
- algebraic_closure.field
- is_subfield.field
- perfect_closure.field
- localization_map.field
- fraction_ring.field
@[instance]
Equations
- field.to_division_ring = {add := field.add (show field α, from _inst_1), add_assoc := _, zero := field.zero (show field α, from _inst_1), zero_add := _, add_zero := _, neg := field.neg (show field α, from _inst_1), add_left_neg := _, add_comm := _, mul := field.mul (show field α, from _inst_1), mul_assoc := _, one := field.one (show field α, from _inst_1), one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, inv := field.inv (show field α, from _inst_1), exists_pair_ne := _, mul_inv_cancel := _, inv_mul_cancel := _, inv_zero := _}
@[instance]
Every field is a comm_group_with_zero
.
Equations
- field.to_comm_group_with_zero = {mul := group_with_zero.mul division_ring.to_group_with_zero, mul_assoc := _, one := group_with_zero.one division_ring.to_group_with_zero, one_mul := _, mul_one := _, mul_comm := _, zero := group_with_zero.zero division_ring.to_group_with_zero, zero_mul := _, mul_zero := _, inv := group_with_zero.inv division_ring.to_group_with_zero, exists_pair_ne := _, inv_zero := _, mul_inv_cancel := _}
@[instance]
Equations
- field.to_integral_domain = {add := field.add _inst_1, add_assoc := _, zero := field.zero _inst_1, zero_add := _, add_zero := _, neg := field.neg _inst_1, add_left_neg := _, add_comm := _, mul := field.mul _inst_1, mul_assoc := _, one := field.one _inst_1, one_mul := _, mul_one := _, left_distrib := _, right_distrib := _, mul_comm := _, exists_pair_ne := _, eq_zero_or_eq_zero_of_mul_eq_zero := _}
theorem
ring_hom.map_ne_zero
{α : Type u}
{β : Type u_1}
[division_ring α]
[semiring β]
[nontrivial β]
(f : α →+* β)
{x : α} :
theorem
ring_hom.map_eq_zero
{α : Type u}
{β : Type u_1}
[division_ring α]
[semiring β]
[nontrivial β]
(f : α →+* β)
{x : α} :
theorem
ring_hom.map_inv
{α : Type u}
{γ : Type u_2}
[division_ring α]
[division_ring γ]
(g : α →+* γ)
(x : α) :
theorem
ring_hom.map_div
{α : Type u}
{γ : Type u_2}
[division_ring α]
[division_ring γ]
(g : α →+* γ)
(x y : α) :
theorem
ring_hom.injective
{α : Type u}
{β : Type u_1}
[division_ring α]
[semiring β]
[nontrivial β]
(f : α →+* β) :