mathlib documentation

linear_algebra.​affine_space.​finite_dimensional

linear_algebra.​affine_space.​finite_dimensional

Finite-dimensional subspaces of affine spaces.

This file provides a few results relating to finite-dimensional subspaces of affine spaces.

theorem finite_dimensional_vector_span_of_finite (k : Type u_1) {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {s : set P} :

The vector_span of a finite set is finite-dimensional.

theorem finite_dimensional_direction_affine_span_of_finite (k : Type u_1) {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {s : set P} :

The direction of the affine span of a finite set is finite-dimensional.

@[instance]
def finite_dimensional_direction_affine_span_of_fintype (k : Type u_1) {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [fintype ι] (p : ι → P) :

The direction of the affine span of a family indexed by a fintype is finite-dimensional.

Equations
  • _ = _
theorem findim_vector_span_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [fintype ι] {p : ι → P} (hi : affine_independent k p) {n : } :

The vector_span of a finite affinely independent family has dimension one less than its cardinality.

theorem vector_span_eq_top_of_affine_independent_of_card_eq_findim_add_one {k : Type u_1} {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [finite_dimensional k V] [fintype ι] {p : ι → P} :

The vector_span of a finite affinely independent family whose cardinality is one more than that of the finite-dimensional space is .

theorem affine_span_eq_top_of_affine_independent_of_card_eq_findim_add_one {k : Type u_1} {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [affine_space V P] {ι : Type u_4} [finite_dimensional k V] [fintype ι] {p : ι → P} :

The affine_span of a finite affinely independent family whose cardinality is one more than that of the finite-dimensional space is .