@[instance]
Equations
- nnreal.has_coe = {coe := subtype.val (λ (r : ℝ), 0 ≤ r)}
@[instance]
Equations
- nnreal.can_lift = {coe := coe coe_to_lift, cond := λ (r : ℝ), 0 ≤ r, prf := nnreal.can_lift._proof_1}
@[instance]
Equations
- nnreal.has_zero = {zero := ⟨0, nnreal.has_zero._proof_1⟩}
@[instance]
Equations
- nnreal.has_sub = {sub := λ (a b : nnreal), nnreal.of_real (↑a - ↑b)}
@[instance]
Equations
- nnreal.inhabited = {default := 0}
@[instance]
Equations
- nnreal.comm_semiring = {add := has_add.add nnreal.has_add, add_assoc := nnreal.comm_semiring._proof_1, zero := 0, zero_add := nnreal.comm_semiring._proof_2, add_zero := nnreal.comm_semiring._proof_3, add_comm := nnreal.comm_semiring._proof_4, mul := has_mul.mul nnreal.has_mul, mul_assoc := nnreal.comm_semiring._proof_5, one := 1, one_mul := nnreal.comm_semiring._proof_6, mul_one := nnreal.comm_semiring._proof_7, zero_mul := nnreal.comm_semiring._proof_8, mul_zero := nnreal.comm_semiring._proof_9, left_distrib := nnreal.comm_semiring._proof_10, right_distrib := nnreal.comm_semiring._proof_11, mul_comm := nnreal.comm_semiring._proof_12}
Coercion ℝ≥0 → ℝ
as a ring_hom
.
Equations
@[instance]
Equations
- nnreal.comm_group_with_zero = {mul := comm_semiring.mul nnreal.comm_semiring, mul_assoc := _, one := comm_semiring.one nnreal.comm_semiring, one_mul := _, mul_one := _, mul_comm := _, zero := comm_semiring.zero nnreal.comm_semiring, zero_mul := _, mul_zero := _, inv := has_inv.inv nnreal.has_inv, exists_pair_ne := nnreal.comm_group_with_zero._proof_1, inv_zero := nnreal.comm_group_with_zero._proof_2, mul_inv_cancel := nnreal.comm_group_with_zero._proof_3}
@[instance]
Equations
- nnreal.decidable_linear_order = decidable_linear_order.lift coe nnreal.decidable_linear_order._proof_1
nnreal.of_real
and coe : ℝ≥0 → ℝ
form a Galois insertion.
Equations
- nnreal.gi = galois_insertion.monotone_intro nnreal.coe_mono nnreal.of_real_mono nnreal.le_coe_of_real nnreal.gi._proof_1
@[instance]
Equations
- nnreal.order_bot = {bot := ⊥, le := decidable_linear_order.le nnreal.decidable_linear_order, lt := decidable_linear_order.lt nnreal.decidable_linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, bot_le := nnreal.order_bot._proof_1}
@[instance]
Equations
- nnreal.canonically_ordered_add_monoid = {add := comm_semiring.add nnreal.comm_semiring, add_assoc := _, zero := comm_semiring.zero nnreal.comm_semiring, zero_add := _, add_zero := _, add_comm := _, le := order_bot.le nnreal.order_bot, lt := order_bot.lt nnreal.order_bot, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := nnreal.canonically_ordered_add_monoid._proof_1, lt_of_add_lt_add_left := nnreal.canonically_ordered_add_monoid._proof_2, bot := order_bot.bot nnreal.order_bot, bot_le := _, le_iff_exists_add := nnreal.canonically_ordered_add_monoid._proof_3}
@[instance]
@[instance]
Equations
- nnreal.semilattice_inf_bot = {bot := order_bot.bot nnreal.order_bot, le := order_bot.le nnreal.order_bot, lt := order_bot.lt nnreal.order_bot, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, bot_le := _, inf := distrib_lattice.inf nnreal.distrib_lattice, inf_le_left := _, inf_le_right := _, le_inf := _}
@[instance]
Equations
- nnreal.semilattice_sup_bot = {bot := order_bot.bot nnreal.order_bot, le := order_bot.le nnreal.order_bot, lt := order_bot.lt nnreal.order_bot, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, bot_le := _, sup := distrib_lattice.sup nnreal.distrib_lattice, le_sup_left := _, le_sup_right := _, sup_le := _}
@[instance]
Equations
- nnreal.linear_ordered_semiring = {add := canonically_ordered_add_monoid.add nnreal.canonically_ordered_add_monoid, add_assoc := _, zero := canonically_ordered_add_monoid.zero nnreal.canonically_ordered_add_monoid, zero_add := _, add_zero := _, add_comm := _, mul := comm_semiring.mul nnreal.comm_semiring, mul_assoc := _, one := comm_semiring.one nnreal.comm_semiring, one_mul := _, mul_one := _, zero_mul := _, mul_zero := _, left_distrib := _, right_distrib := _, add_left_cancel := nnreal.linear_ordered_semiring._proof_1, add_right_cancel := nnreal.linear_ordered_semiring._proof_2, le := decidable_linear_order.le nnreal.decidable_linear_order, lt := decidable_linear_order.lt nnreal.decidable_linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, le_of_add_le_add_left := nnreal.linear_ordered_semiring._proof_3, mul_lt_mul_of_pos_left := nnreal.linear_ordered_semiring._proof_4, mul_lt_mul_of_pos_right := nnreal.linear_ordered_semiring._proof_5, le_total := _, zero_lt_one := _}
@[instance]
Equations
- nnreal.linear_ordered_comm_group_with_zero = {le := linear_ordered_semiring.le nnreal.linear_ordered_semiring, lt := linear_ordered_semiring.lt nnreal.linear_ordered_semiring, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, mul := linear_ordered_semiring.mul nnreal.linear_ordered_semiring, mul_assoc := _, one := linear_ordered_semiring.one nnreal.linear_ordered_semiring, one_mul := _, mul_one := _, mul_comm := _, zero := linear_ordered_semiring.zero nnreal.linear_ordered_semiring, zero_mul := _, mul_zero := _, inv := comm_group_with_zero.inv nnreal.comm_group_with_zero, exists_pair_ne := _, inv_zero := _, mul_inv_cancel := _, mul_le_mul_left := nnreal.linear_ordered_comm_group_with_zero._proof_1, zero_le_one := nnreal.linear_ordered_comm_group_with_zero._proof_2}
@[instance]
Equations
- nnreal.canonically_ordered_comm_semiring = {add := canonically_ordered_add_monoid.add nnreal.canonically_ordered_add_monoid, add_assoc := _, zero := canonically_ordered_add_monoid.zero nnreal.canonically_ordered_add_monoid, zero_add := _, add_zero := _, add_comm := _, le := canonically_ordered_add_monoid.le nnreal.canonically_ordered_add_monoid, lt := canonically_ordered_add_monoid.lt nnreal.canonically_ordered_add_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, lt_of_add_lt_add_left := _, bot := canonically_ordered_add_monoid.bot nnreal.canonically_ordered_add_monoid, bot_le := _, le_iff_exists_add := _, mul := comm_semiring.mul nnreal.comm_semiring, mul_assoc := _, one := comm_semiring.one nnreal.comm_semiring, one_mul := _, mul_one := _, zero_mul := _, mul_zero := _, left_distrib := _, right_distrib := _, mul_comm := _, exists_pair_ne := _, eq_zero_or_eq_zero_of_mul_eq_zero := nnreal.canonically_ordered_comm_semiring._proof_1}
@[instance]
Equations
- nnreal.densely_ordered = _
- _ = _
@[instance]
Equations
- nnreal.no_top_order = _
- _ = _
@[instance]
Equations
- nnreal.has_Sup = {Sup := λ (s : set nnreal), ⟨has_Sup.Sup (coe '' s), _⟩}
@[instance]
Equations
- nnreal.has_Inf = {Inf := λ (s : set nnreal), ⟨has_Inf.Inf (coe '' s), _⟩}
@[instance]
Equations
- nnreal.conditionally_complete_linear_order_bot = {sup := lattice.sup lattice_of_decidable_linear_order, le := linear_ordered_semiring.le nnreal.linear_ordered_semiring, lt := linear_ordered_semiring.lt nnreal.linear_ordered_semiring, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := nnreal.conditionally_complete_linear_order_bot._proof_1, le_sup_right := nnreal.conditionally_complete_linear_order_bot._proof_2, sup_le := nnreal.conditionally_complete_linear_order_bot._proof_3, inf := lattice.inf lattice_of_decidable_linear_order, inf_le_left := nnreal.conditionally_complete_linear_order_bot._proof_4, inf_le_right := nnreal.conditionally_complete_linear_order_bot._proof_5, le_inf := nnreal.conditionally_complete_linear_order_bot._proof_6, Sup := has_Sup.Sup nnreal.has_Sup, Inf := has_Inf.Inf nnreal.has_Inf, le_cSup := nnreal.conditionally_complete_linear_order_bot._proof_7, cSup_le := nnreal.conditionally_complete_linear_order_bot._proof_8, cInf_le := nnreal.conditionally_complete_linear_order_bot._proof_9, le_cInf := nnreal.conditionally_complete_linear_order_bot._proof_10, le_total := _, decidable_le := id (λ (x y : nnreal), classical.dec (x ≤ y)), decidable_eq := decidable_linear_order.decidable_eq._default linear_ordered_semiring.le linear_ordered_semiring.lt linear_ordered_semiring.le_refl linear_ordered_semiring.le_trans linear_ordered_semiring.lt_iff_le_not_le linear_ordered_semiring.le_antisymm linear_ordered_semiring.le_total (id (λ (x y : nnreal), classical.dec (x ≤ y))), decidable_lt := decidable_linear_order.decidable_lt._default linear_ordered_semiring.le linear_ordered_semiring.lt linear_ordered_semiring.le_refl linear_ordered_semiring.le_trans linear_ordered_semiring.lt_iff_le_not_le linear_ordered_semiring.le_antisymm linear_ordered_semiring.le_total (id (λ (x y : nnreal), classical.dec (x ≤ y))), bot := order_bot.bot nnreal.order_bot, bot_le := _, cSup_empty := nnreal.conditionally_complete_linear_order_bot._proof_11}
@[instance]
Equations
- nnreal.archimedean = _
- _ = _
@[simp]
theorem
nnreal.of_real_le_of_real_iff
{r p : ℝ} :
0 ≤ p → (nnreal.of_real r ≤ nnreal.of_real p ↔ r ≤ p)
@[simp]
theorem
nnreal.of_real_lt_of_real_iff'
{r p : ℝ} :
nnreal.of_real r < nnreal.of_real p ↔ r < p ∧ 0 < p
theorem
nnreal.of_real_lt_of_real_iff
{r p : ℝ} :
0 < p → (nnreal.of_real r < nnreal.of_real p ↔ r < p)
theorem
nnreal.of_real_lt_of_real_iff_of_nonneg
{r p : ℝ} :
0 ≤ r → (nnreal.of_real r < nnreal.of_real p ↔ r < p)
@[simp]
theorem
nnreal.of_real_add
{r p : ℝ} :
0 ≤ r → 0 ≤ p → nnreal.of_real (r + p) = nnreal.of_real r + nnreal.of_real p
theorem
nnreal.of_real_add_of_real
{r p : ℝ} :
0 ≤ r → 0 ≤ p → nnreal.of_real r + nnreal.of_real p = nnreal.of_real (r + p)
theorem
nnreal.of_real_add_le
{r p : ℝ} :
nnreal.of_real (r + p) ≤ nnreal.of_real r + nnreal.of_real p
theorem
nnreal.of_real_mul
{p q : ℝ} :
0 ≤ p → nnreal.of_real (p * q) = nnreal.of_real p * nnreal.of_real q