mathlib documentation

algebra.​direct_sum

algebra.​direct_sum

Direct sum

This file defines the direct sum of abelian groups, indexed by a discrete type.

Notation

⨁ i, β i is the n-ary direct sum direct_sum. This notation is in the direct_sum locale, accessible after open_locale direct_sum.

References

def direct_sum (ι : Type v) [decidable_eq ι] (β : ι → Type w) [Π (i : ι), add_comm_group (β i)] :
Type (max v w)

Equations
@[instance]
def direct_sum.​add_comm_group {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] :
add_comm_group (direct_sum ι (λ (i : ι), β i))

Equations
@[instance]
def direct_sum.​inhabited {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] :
inhabited (direct_sum ι (λ (i : ι), β i))

Equations
def direct_sum.​mk {ι : Type v} [decidable_eq ι] (β : ι → Type w) [Π (i : ι), add_comm_group (β i)] (s : finset ι) :
(Π (i : s), β i.val)direct_sum ι (λ (i : ι), β i)

Equations
def direct_sum.​of {ι : Type v} [decidable_eq ι] (β : ι → Type w) [Π (i : ι), add_comm_group (β i)] (i : ι) :
β idirect_sum ι (λ (i : ι), β i)

Equations
@[instance]
def direct_sum.​mk.​is_add_group_hom {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) :

Equations
@[simp]
theorem direct_sum.​mk_zero {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) :
direct_sum.mk β s 0 = 0

@[simp]
theorem direct_sum.​mk_add {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) (x y : Π (i : s), β i.val) :
direct_sum.mk β s (x + y) = direct_sum.mk β s x + direct_sum.mk β s y

@[simp]
theorem direct_sum.​mk_neg {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) (x : Π (i : s), β i.val) :

@[simp]
theorem direct_sum.​mk_sub {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) (x y : Π (i : s), β i.val) :
direct_sum.mk β s (x - y) = direct_sum.mk β s x - direct_sum.mk β s y

@[instance]
def direct_sum.​of.​is_add_group_hom {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) :

Equations
@[simp]
theorem direct_sum.​of_zero {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) :
direct_sum.of β i 0 = 0

@[simp]
theorem direct_sum.​of_add {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) (x y : β i) :
direct_sum.of β i (x + y) = direct_sum.of β i x + direct_sum.of β i y

@[simp]
theorem direct_sum.​of_neg {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) (x : β i) :

@[simp]
theorem direct_sum.​of_sub {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) (x y : β i) :
direct_sum.of β i (x - y) = direct_sum.of β i x - direct_sum.of β i y

theorem direct_sum.​mk_injective {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (s : finset ι) :

theorem direct_sum.​of_injective {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (i : ι) :

theorem direct_sum.​induction_on {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {C : direct_sum ι (λ (i : ι), β i) → Prop} (x : direct_sum ι (λ (i : ι), β i)) :
C 0(∀ (i : ι) (x : β i), C (direct_sum.of β i x))(∀ (x y : direct_sum ι (λ (i : ι), β i)), C xC yC (x + y))C x

def direct_sum.​to_group {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] :
direct_sum ι (λ (i : ι), β i) → γ

Equations
@[instance]
def direct_sum.​to_group.​is_add_group_hom {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] {φ : Π (i : ι), β i → γ} [∀ (i : ι), is_add_group_hom (φ i)] :

Equations
@[simp]
theorem direct_sum.​to_group_zero {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] :

@[simp]
theorem direct_sum.​to_group_add {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] (x y : direct_sum ι (λ (i : ι), β i)) :

@[simp]
theorem direct_sum.​to_group_neg {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] (x : direct_sum ι (λ (i : ι), β i)) :

@[simp]
theorem direct_sum.​to_group_sub {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] (x y : direct_sum ι (λ (i : ι), β i)) :

@[simp]
theorem direct_sum.​to_group_of {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (φ : Π (i : ι), β i → γ) [∀ (i : ι), is_add_group_hom (φ i)] (i : ι) (x : β i) :

theorem direct_sum.​to_group.​unique {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] {γ : Type u₁} [add_comm_group γ] (ψ : direct_sum ι (λ (i : ι), β i) → γ) [is_add_group_hom ψ] (f : direct_sum ι (λ (i : ι), β i)) :
ψ f = direct_sum.to_group (λ (i : ι), ψ direct_sum.of β i) f

def direct_sum.​set_to_set {ι : Type v} [decidable_eq ι] (β : ι → Type w) [Π (i : ι), add_comm_group (β i)] (S T : set ι) :
S Tdirect_sum S (λ (i : S), β i)direct_sum T (λ (i : T), β i)

Equations
@[instance]
def direct_sum.​is_add_group_hom {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] (S T : set ι) (H : S T) :

Equations
def direct_sum.​id (M : Type v) [add_comm_group M] :
direct_sum punit (λ (_x : punit), M) M

Equations
@[instance]
def direct_sum.​has_coe_to_fun {ι : Type v} [decidable_eq ι] {β : ι → Type w} [Π (i : ι), add_comm_group (β i)] :
has_coe_to_fun (direct_sum ι (λ (i : ι), β i))

Equations