mathlib documentation

field_theory.​splitting_field

field_theory.​splitting_field

def polynomial.​splits {α : Type u} {β : Type v} [field α] [field β] :
→+* β)polynomial α → Prop

a polynomial splits iff it is zero or all of its irreducible factors have degree 1

Equations
@[simp]
theorem polynomial.​splits_zero {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) :

@[simp]
theorem polynomial.​splits_C {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) (a : α) :

theorem polynomial.​splits_of_degree_eq_one {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_of_degree_le_one {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_mul {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f g : polynomial α} :

theorem polynomial.​splits_of_splits_mul {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f g : polynomial α} :

theorem polynomial.​splits_of_splits_of_dvd {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f g : polynomial α} :
f 0polynomial.splits i fg fpolynomial.splits i g

theorem polynomial.​splits_map_iff {α : Type u} {β : Type v} {γ : Type w} [field α] [field β] [field γ] (i : α →+* β) (j : β →+* γ) {f : polynomial α} :

theorem polynomial.​splits_one {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) :

theorem polynomial.​splits_of_is_unit {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {u : polynomial α} :

theorem polynomial.​splits_X_sub_C {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {x : α} :

theorem polynomial.​splits_id_iff_splits {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_mul_iff {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f g : polynomial α} :

theorem polynomial.​splits_prod {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {ι : Type w} {s : ι → polynomial α} {t : finset ι} :
(∀ (j : ι), j tpolynomial.splits i (s j))polynomial.splits i (t.prod (λ (x : ι), s x))

theorem polynomial.​splits_prod_iff {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {ι : Type w} {s : ι → polynomial α} {t : finset ι} :
(∀ (j : ι), j ts j 0)(polynomial.splits i (t.prod (λ (x : ι), s x)) ∀ (j : ι), j tpolynomial.splits i (s j))

theorem polynomial.​exists_root_of_splits {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :
polynomial.splits i ff.degree 0(∃ (x : β), polynomial.eval₂ i x f = 0)

theorem polynomial.​exists_multiset_of_splits {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

def polynomial.​root_of_splits {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :
polynomial.splits i ff.degree 0 → β

Pick a root of a polynomial that splits.

Equations
theorem polynomial.​map_root_of_splits {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} (hf : polynomial.splits i f) (hfd : f.degree 0) :

theorem polynomial.​roots_map {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_of_exists_multiset {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} {s : multiset β} :

theorem polynomial.​splits_of_splits_id {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_iff_exists_multiset {α : Type u} {β : Type v} [field α] [field β] (i : α →+* β) {f : polynomial α} :

theorem polynomial.​splits_comp_of_splits {α : Type u} {β : Type v} {γ : Type w} [field α] [field β] [field γ] (i : α →+* β) (j : β →+* γ) {f : polynomial α} :

If p is the minimal polynomial of a over F then F[a] ≃ₐ[F] F[x]/(p)

Equations
theorem lift_of_splits {F : Type u_1} {K : Type u_2} {L : Type u_3} [field F] [field K] [field L] [algebra F K] [algebra F L] (s : finset K) :
(∀ (x : K), x s(∃ (H : is_integral F x), polynomial.splits (algebra_map F L) (minimal_polynomial H)))nonempty ((algebra.adjoin F s) →ₐ[F] L)

If K and L are field extensions of F and we have s : finset K such that the minimal polynomial of each x ∈ s splits in L then algebra.adjoin F s embeds in L.

def polynomial.​factor {α : Type u} [field α] :

Non-computably choose an irreducible factor from a polynomial.

Equations
@[instance]
def polynomial.​irreducible_factor {α : Type u} [field α] (f : polynomial α) :

Equations
  • _ = _
theorem polynomial.​factor_dvd_of_not_is_unit {α : Type u} [field α] {f : polynomial α} :
¬is_unit ff.factor f

theorem polynomial.​factor_dvd_of_degree_ne_zero {α : Type u} [field α] {f : polynomial α} :
f.degree 0f.factor f

theorem polynomial.​factor_dvd_of_nat_degree_ne_zero {α : Type u} [field α] {f : polynomial α} :
f.nat_degree 0f.factor f

def polynomial.​remove_factor {α : Type u} [field α] (f : polynomial α) :

Divide a polynomial f by X - C r where r is a root of f in a bigger field extension.

Equations
theorem polynomial.​nat_degree_remove_factor' {α : Type u} [field α] {f : polynomial α} {n : } :

def polynomial.​splitting_field_aux (n : ) {α : Type u} [field α] (f : polynomial α) :
f.nat_degree = nType u

Auxiliary construction to a splitting field of a polynomial. Uses induction on the degree.

Equations
@[instance]
def polynomial.​splitting_field_aux.​field (n : ) {α : Type u} [field α] {f : polynomial α} (hfn : f.nat_degree = n) :

Equations
@[instance]
def polynomial.​splitting_field_aux.​algebra (n : ) {α : Type u} [field α] {f : polynomial α} (hfn : f.nat_degree = n) :

Equations
@[instance]

Equations
  • _ = _
@[instance]

Equations
  • _ = _
theorem polynomial.​splitting_field_aux.​exists_lift (n : ) {α : Type u} [field α] (f : polynomial α) (hfn : f.nat_degree = n) {β : Type u_1} [field β] (j : α →+* β) :

def polynomial.​splitting_field {α : Type u} [field α] :
polynomial αType u

A splitting field of a polynomial.

Equations
def polynomial.​splitting_field.​lift {α : Type u} {β : Type v} [field α] [field β] (f : polynomial α) [algebra α β] :

Embeds the splitting field into any other field that splits the polynomial.

Equations
@[class]
structure polynomial.​is_splitting_field (α : Type u) (β : Type v) [field α] [field β] [algebra α β] :
polynomial α → Prop

Typeclass characterising splitting fields.

Instances
@[instance]
def polynomial.​is_splitting_field.​map {α : Type u} {β : Type v} {γ : Type w} [field α] [field β] [field γ] [algebra α β] [algebra β γ] [algebra α γ] [is_scalar_tower α β γ] (f : polynomial α) [polynomial.is_splitting_field α γ f] :

Equations
  • _ = _
theorem polynomial.​is_splitting_field.​mul {α : Type u} (β : Type v) {γ : Type w} [field α] [field β] [field γ] [algebra α β] [algebra β γ] [algebra α γ] [is_scalar_tower α β γ] (f g : polynomial α) (hf : f 0) (hg : g 0) [polynomial.is_splitting_field α β f] [polynomial.is_splitting_field β γ (polynomial.map (algebra_map α β) g)] :

def polynomial.​is_splitting_field.​lift {α : Type u} (β : Type v) {γ : Type w} [field α] [field β] [field γ] [algebra α β] [algebra α γ] (f : polynomial α) [polynomial.is_splitting_field α β f] :
polynomial.splits (algebra_map α γ) f→ₐ[α] γ)

Splitting field of f embeds into any field that splits f.

Equations
theorem polynomial.​is_splitting_field.​finite_dimensional {α : Type u} (β : Type v) [field α] [field β] [algebra α β] (f : polynomial α) [polynomial.is_splitting_field α β f] :

def polynomial.​is_splitting_field.​alg_equiv {α : Type u} (β : Type v) [field α] [field β] [algebra α β] (f : polynomial α) [polynomial.is_splitting_field α β f] :

Any splitting field is isomorphic to splitting_field f.

Equations