mathlib documentation

data.​polynomial.​monomial

data.​polynomial.​monomial

Univariate monomials

Preparatory lemmas for degree_basic.

def polynomial.​C {R : Type u} [semiring R] :

C a is the constant polynomial a. C is provided as a ring homomorphism.

Equations
@[simp]

theorem polynomial.​C_0 {R : Type u} [semiring R] :

theorem polynomial.​C_1 {R : Type u} [semiring R] :

theorem polynomial.​C_mul {R : Type u} {a b : R} [semiring R] :

theorem polynomial.​C_add {R : Type u} {a b : R} [semiring R] :

@[simp]
theorem polynomial.​C_bit0 {R : Type u} {a : R} [semiring R] :

@[simp]
theorem polynomial.​C_bit1 {R : Type u} {a : R} [semiring R] :

theorem polynomial.​C_pow {R : Type u} {a : R} {n : } [semiring R] :

@[simp]
theorem polynomial.​C_eq_nat_cast {R : Type u} [semiring R] (n : ) :

@[simp]
theorem polynomial.​sum_C_index {R : Type u} [semiring R] {a : R} {β : Type u_1} [add_comm_monoid β] {f : R → β} :
f 0 0 = 0finsupp.sum (polynomial.C a) f = f 0 a

theorem polynomial.​coeff_C {R : Type u} {a : R} {n : } [semiring R] :
(polynomial.C a).coeff n = ite (n = 0) a 0

@[simp]
theorem polynomial.​coeff_C_zero {R : Type u} {a : R} [semiring R] :

theorem polynomial.​nonzero.​of_polynomial_ne {R : Type u} [semiring R] {p q : polynomial R} :
p qnontrivial R

theorem polynomial.​C_inj {R : Type u} {a b : R} [semiring R] :