mathlib documentation

field_theory.​normal

field_theory.​normal

Normal field extensions

In this file we define normal field extensions and prove that for a finite extension, being normal is the same as being a splitting field (TODO).

Main Definitions

@[class]
def normal (F : Type u) (K : Type v) [field F] [field K] [algebra F K] :
Prop

Typeclass for normal field extension: K is a normal extension of F iff the minimal polynomial of every element x in K splits in K, i.e. every conjugate of x is in K.

Equations
Instances
theorem normal.​is_integral (F : Type u) (K : Type v) [field F] [field K] [algebra F K] [h : normal F K] (x : K) :

theorem normal.​splits (F : Type u) (K : Type v) [field F] [field K] [algebra F K] [h : normal F K] (x : K) :

theorem normal.​exists_is_splitting_field (F : Type u) (K : Type v) [field F] [field K] [algebra F K] [normal F K] [finite_dimensional F K] :