mathlib documentation

ring_theory.​free_ring

ring_theory.​free_ring

def free_ring  :
Type uType u

Equations
@[instance]
def free_ring.​ring (α : Type u) :

Equations
@[instance]
def free_ring.​inhabited (α : Type u) :

Equations
def free_ring.​of {α : Type u} :
α → free_ring α

Equations
theorem free_ring.​induction_on {α : Type u} {C : free_ring α → Prop} (z : free_ring α) :
C (-1)(∀ (b : α), C (free_ring.of b))(∀ (x y : free_ring α), C xC yC (x + y))(∀ (x y : free_ring α), C xC yC (x * y))C z

def free_ring.​lift {α : Type u} {β : Type v} [ring β] :
(α → β)free_ring α → β

Equations
@[simp]
theorem free_ring.​lift_zero {α : Type u} {β : Type v} [ring β] (f : α → β) :

@[simp]
theorem free_ring.​lift_one {α : Type u} {β : Type v} [ring β] (f : α → β) :

@[simp]
theorem free_ring.​lift_of {α : Type u} {β : Type v} [ring β] (f : α → β) (x : α) :

@[simp]
theorem free_ring.​lift_add {α : Type u} {β : Type v} [ring β] (f : α → β) (x y : free_ring α) :

@[simp]
theorem free_ring.​lift_neg {α : Type u} {β : Type v} [ring β] (f : α → β) (x : free_ring α) :

@[simp]
theorem free_ring.​lift_sub {α : Type u} {β : Type v} [ring β] (f : α → β) (x y : free_ring α) :

@[simp]
theorem free_ring.​lift_mul {α : Type u} {β : Type v} [ring β] (f : α → β) (x y : free_ring α) :

@[instance]
def free_ring.​is_ring_hom {α : Type u} {β : Type v} [ring β] (f : α → β) :

Equations
  • _ = _
@[simp]
theorem free_ring.​lift_pow {α : Type u} {β : Type v} [ring β] (f : α → β) (x : free_ring α) (n : ) :

@[simp]
theorem free_ring.​lift_comp_of {α : Type u} {β : Type v} [ring β] (f : free_ring α →+* β) :

def free_ring.​lift_hom {α : Type u} {β : Type v} [ring β] :
(α → β)free_ring α →+* β

Lift of a map f : α → β to free_ring α as a ring homomorphism. We don't use it as the canonical form because Lean fails to coerce it to a function.

Equations
def free_ring.​map {α : Type u} {β : Type v} :
(α → β)free_ring αfree_ring β

Equations
@[simp]
theorem free_ring.​map_zero {α : Type u} {β : Type v} (f : α → β) :

@[simp]
theorem free_ring.​map_one {α : Type u} {β : Type v} (f : α → β) :

@[simp]
theorem free_ring.​map_of {α : Type u} {β : Type v} (f : α → β) (x : α) :

@[simp]
theorem free_ring.​map_add {α : Type u} {β : Type v} (f : α → β) (x y : free_ring α) :

@[simp]
theorem free_ring.​map_neg {α : Type u} {β : Type v} (f : α → β) (x : free_ring α) :

@[simp]
theorem free_ring.​map_sub {α : Type u} {β : Type v} (f : α → β) (x y : free_ring α) :

@[simp]
theorem free_ring.​map_mul {α : Type u} {β : Type v} (f : α → β) (x y : free_ring α) :

@[simp]
theorem free_ring.​map_pow {α : Type u} {β : Type v} (f : α → β) (x : free_ring α) (n : ) :

def free_ring.​map_hom {α : Type u} {β : Type v} :
(α → β)free_ring α →+* free_ring β

A map f : α → β produces a ring homomorphism free_ring α → free_ring β.

Equations