mathlib documentation

analysis.​normed_space.​mazur_ulam

analysis.​normed_space.​mazur_ulam

Mazur-Ulam Theorem

Mazur-Ulam theorem states that an isometric bijection between two normed spaces over is affine. We formalize it in two definitions:

The formalization is based on [Jussi Väisälä, A Proof of the Mazur-Ulam Theorem][Vaisala_2003].

TODO

Once we have affine equivalences, upgrade isometric.to_affine_map to isometric.to_affine_equiv.

Tags

isometry, affine map, linear map

theorem isometric.​midpoint_fixed {E : Type u_1} [normed_group E] [normed_space E] {x y : E} (e : E ≃ᵢ E) :
e x = xe y = ye (midpoint x y) = midpoint x y

If an isometric self-homeomorphism of a normed vector space over fixes x and y, then it fixes the midpoint of [x, y]. This is a lemma for a more general Mazur-Ulam theorem, see below.

theorem isometric.​map_midpoint {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] (f : E ≃ᵢ F) (x y : E) :
f (midpoint x y) = midpoint (f x) (f y)

A bijective isometry sends midpoints to midpoints.

Since f : E ≃ᵢ F sends midpoints to midpoints, it is an affine map. We define a conversion to a continuous_linear_equiv first, then a conversion to an affine_map.

def isometric.​to_real_linear_equiv_of_map_zero {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] (f : E ≃ᵢ F) :
f 0 = 0(E ≃L[] F)

Mazur-Ulam Theorem: if f is an isometric bijection between two normed vector spaces over and f 0 = 0, then f is a linear equivalence.

Equations
@[simp]

@[simp]

def isometric.​to_real_linear_equiv {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] :
E ≃ᵢ F(E ≃L[] F)

Mazur-Ulam Theorem: if f is an isometric bijection between two normed vector spaces over , then x ↦ f x - f 0 is a linear equivalence.

Equations
@[simp]
theorem isometric.​to_real_linear_equiv_apply {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] (f : E ≃ᵢ F) (x : E) :

@[simp]
theorem isometric.​to_real_linear_equiv_symm_apply {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] (f : E ≃ᵢ F) (y : F) :

def isometric.​to_affine_map {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] {PE : Type u_3} {PF : Type u_4} [metric_space PE] [normed_add_torsor E PE] [metric_space PF] [normed_add_torsor F PF] :
PE ≃ᵢ PFaffine_map PE PF

Convert an isometric equivalence between two affine spaces to an affine_map.

Equations
@[simp]
theorem isometric.​coe_to_affine_map {E : Type u_1} [normed_group E] [normed_space E] {F : Type u_2} [normed_group F] [normed_space F] {PE : Type u_3} {PF : Type u_4} [metric_space PE] [normed_add_torsor E PE] [metric_space PF] [normed_add_torsor F PF] (f : PE ≃ᵢ PF) :